设A是3阶矩阵,3维非零列向量α不是A的特征向量,且A2α+Aα-2α=0,f(x)=|xE-A|,则存在x0∈(-2,1)使得曲线y=f(x)在(x0,f(x0))处的切线垂直于( )

admin2022-04-27  54

问题 设A是3阶矩阵,3维非零列向量α不是A的特征向量,且A2α+Aα-2α=0,f(x)=|xE-A|,则存在x0∈(-2,1)使得曲线y=f(x)在(x0,f(x0))处的切线垂直于(          )

选项 A、y=1.
B、x=1.
C、y=x.
D、y=-x.

答案B

解析 由A2α+Aα-2α=0,知(A-E)(A+2E)α=0.若A-E可逆,则(A+2E)α=0,即Aα=-2α,与已知矛盾,故A-E不可逆.同理,可知A+2E不可逆,从而|A-E|=0,且|A+2E|=0,于是A有特征值λ=1,λ=-2,故
f(1)=|E-A|=0,f(-2)=|-2E-A|=0.
由罗尔定理,可知至少存在一点x0∈(-2,1),使得f’(x0)=0,B正确.
转载请注明原文地址:https://kaotiyun.com/show/PLR4777K
0

最新回复(0)