首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)=,g(χ)=∫0χsin2(χ-t)dt,则当χ→0时,g(χ)是f(χ)的( ).
设f(χ)=,g(χ)=∫0χsin2(χ-t)dt,则当χ→0时,g(χ)是f(χ)的( ).
admin
2020-03-01
56
问题
设f(χ)=
,g(χ)=∫
0
χ
sin
2
(χ-t)dt,则当χ→0时,g(χ)是f(χ)的( ).
选项
A、高阶无穷小
B、低阶无穷小
C、同阶但非等价的无穷小
D、等价无穷小
答案
A
解析
由
得当χ→0时,f(χ)~
χ
2
,
又g(χ)=∫
0
χ
sin
2
(χ-t)
∫
χ
0
sin
2
u(-du)=∫
0
χ
sin
2
udu,
由
,得当χ→0时,g(χ)~
χ
3
,
故g(χ)是f(χ)的高阶无穷小,应选A.
转载请注明原文地址:https://kaotiyun.com/show/7RA4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得f′(ξ)sinξ+f(ξ)cosξ=0.
设α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T.p为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大无关组.
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.求A的特征值;
求下列不定积分:
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:r(A-aE)+r(A-bE)=n.
设z=f(x,y)是由方程z-y-z+xez-y-x=0所确定的二元函数,求dz.
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。求矩阵B。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn—r+1是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设连续非负函数f(x)满足f(x)f(-x)=1,求
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=_________.
随机试题
以下不具有抑制环氧化酶作用的药物是
真正结缔组织病包括
诉讼终结将导致委托诉讼代理人委托代理权的消灭,下列说法正确的是:()
门窗人工淋水应逐户全数检查。()
航站楼计算机地面信息管理系统主机房吊顶下净高不小于()m。
临时反倾销措施实施的期限一般为______个月。
在旅游活动中,导游人员应尽量不饮酒或少喝酒,饮酒时酒量不能超过自己酒量的(),以免酒后失态,影响工作。
Itmightbesupposedthatgreaterefficiencycouldbeachievedifseveralpeopleworkedtogethertosolveaproblemthanifonly
为表单MyForm添加事件或方法代码,改变该表单中的控件cmd1的Caption属性的正确命令是
十进制数221用二进制数表示是
最新回复
(
0
)