首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则秩(A
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则秩(A
admin
2019-05-12
66
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:
①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则Ax=0与Bx=0同解.
以上命题中正确的是
选项
A、①②.
B、①③.
C、②④.
D、③④.
答案
B
解析
转载请注明原文地址:https://kaotiyun.com/show/8804777K
0
考研数学一
相关试题推荐
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ∈(a,b),使得f"(ξ)=f(ξ);
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.求A的非零特征值及其对应的线性无关的特征向量.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2.求此时的D1+D2.
设a1=2,an+1=(n=1,2,…).证明:级数收敛.
求微分方程(y+)dx一xdy=0(x>0)的满足初始条件y(1)=0的解.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
设在区间[a,b]上f(x)>0,f’(x)<0,f’’(x)>0,令S1=∫abf(x)dx,S2=f(b)(b一a),S3=[f(a)+f(b)],则().
设g*(x)=0,且f(x)-f*(x),g(x)-g*(x)(x→a).当x→a时无穷小f(x)与g(x)可比较,不等价(=∞),求证:f(x)-g(x)~f*(x)-g*(x)(x→a);
随机试题
Theworldisundergoingagreattransitionmarkedbyuncertaintyandcomplexitywhichwedonotyetunderstand.Thisposes(提
能增强磺胺类药物抗菌作用的药物是
大量饮清水后尿量增加主要原因是静脉注射甘露醇引起尿量增加的机制是
潜水含水层到处都可以接受补给,其污染的危险性取决于包气带的()。
我们常说美国人喜欢冒险,中国人强调平安是福,这体现的客户风险特征是()。
表示男女在生物学方面差异的是()。
下列有关报告撰写的说法不正确的是()。
关于前期罗马帝国时期的经济状况的叙述,不正确的是()。
Theopeningceremonyisagreatoccasion.Itisessential________forthat.
设,求
最新回复
(
0
)