首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则
admin
2019-03-11
64
问题
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρ
XY
=1,则
选项
A、P{Y=一2X一1}=1.
B、P{Y=2X一1}=1.
C、P{Y=一2X+1}=1.
D、P{Y=2X+1}=1.
答案
D
解析
由于X与Y的相关系数ρ
XY
=1>0,因此P{Y=aX+b}=1,且a>0.又因为Y~N(1,4),X~N(0,1),所以EX=0,EY=1,而EY=E(aX+b)=b
b=1,即应选(D).
转载请注明原文地址:https://kaotiyun.com/show/83P4777K
0
考研数学三
相关试题推荐
在R4中求一个单位向量,使它与α1=(1,1,一1,1)T,α2=(1,一1,一1,1)T,α3=(2,1,1,3)T都正交.
已知A=是n阶矩阵,求A的特征值、特征向量并求可逆矩阵P使P-1AP=A.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
设由方程φ(bz—cy,cx一az,ay—bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’1一aφ2≠0,求.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设A是n阶矩阵,下列命题中正确的是()
设A和B为任意两不相容事件,且P(A)P(B)>0,则必有()
袋中有1个红球,2个黑球和3个白球,现有放回地从袋中取两次,每次取一球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
设F(x)=esintsintdt,则F(x)()
随机试题
销售指标的确定要根据()分别确定不同的销售指标。
下列关于药物注射吸收的叙述,错误的是
生产经营单位的从业人员不服从管理,违反安全生产规章制度或者操作规程的,由生产经营单位给予批评教育,依照有关规章制度给予处分;造成重大事故,构成犯罪的,依照刑法有关规定追究()。
城市分区规划的主要内容有()
锤击沉桩主要是用于()。
有关市场风险,下面说法错误的是()。
计算,其中是从点(1,1,1)到点(2,3,4)的直线段.
~IPSec的加密和认证过程中所使用的密钥由()机制来生成和分发。
Itwasnotmuchfuntotravelononeoftheoldsailingships.Lifewashardforbothpassengersandcrew.(78)17thcenturysai
如果“义”代表一种伦理的人生态度,“利”代表一种功利的人生态度,那么,我所说的“情”便代表一种审美的人生态度。它主张率性而行,适情而止,每个人都保持自己的真性情。你不是你所信奉的教义,也不是你所占有的物品,你之为你仅在于你的真实“自我”。生命的意义不在于
最新回复
(
0
)