首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,A可逆,且A—B,则下列命题中 ①AB~BA; ②A2~B2; ③A2~BT; ④A—1~B—1。 正确的个数为( )
设A,B均为n阶矩阵,A可逆,且A—B,则下列命题中 ①AB~BA; ②A2~B2; ③A2~BT; ④A—1~B—1。 正确的个数为( )
admin
2017-12-29
35
问题
设A,B均为n阶矩阵,A可逆,且A—B,则下列命题中
①AB~BA;
②A
2
~B
2
;
③A
2
~B
T
;
④A
—1
~B
—1
。
正确的个数为( )
选项
A、1
B、2
C、3
D、4
答案
D
解析
因A—B,可知存在可逆矩阵P,使得P
—1
AP=B,于是
P
—1
A
2
P=B
2
,P
T
A
T
(P
T
)
—1
=B
T
,P
—1
A
—1
P=B
—1
,
故 A
2
~B
2
,A
T
~B
T
,A
—1
B
—1
。
又由于A可逆,可知A
—1
(AB)A=BA,即AB~BA。故正确的命题有四个,所以选D。
转载请注明原文地址:https://kaotiyun.com/show/fFX4777K
0
考研数学三
相关试题推荐
已知随机向量(X1,X2)的概率密度为f1(x1,x2),设Y1=2X1,Y2=,则随机向量(Y1,Y2)的概率密度为f2(y1,y2)=()
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是,r阶单位阵.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
设向量组α1=[a11…a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
已知A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E—A|中;命题成立的有().
随机试题
婴儿面部的皮肤消毒,应采取
浸提的基本原理为
建筑施工企业从事电焊、气焊等具有火灾危险作业的人员,必须持有相应的( )。
自理报检单位去异地检验机构报检时,无需重新办理备案登记。( )
增值税小规模纳税人购进货物支付的增值税直接计入有关货物的成本。()
根据喷头的常开、常闭形式,自动喷水灭火系统可分为闭式系统和开式系统。闭式系统有()之分。
人民代表大会制度作为我国的根本政治制度,直接体现了宪法一般原则中的()。
Shebumpedintoherboyfriendintownthismorning.
Idecidedtogetintouchwithhim______afterIreceivedhisletter.
Ineverycultivatedlanguagetherearetwogreatclassesofwordswhich,takentogether,comprisesthewholevocabulary.First,
最新回复
(
0
)