设f(x)在[a,b]上连续,在(a,b))内可导(0≤a<b≤π/2)。证明:存在ζ,η∈(a,b),使得 。

admin2021-01-31  54

问题 设f(x)在[a,b]上连续,在(a,b))内可导(0≤a<b≤π/2)。证明:存在ζ,η∈(a,b),使得

选项

答案令g(x)=-cosX,g’(x)=sinx≠0(a<x<b), 由柯西中值定理,存在η∈(a,b),使得[fB-fA]/(cosb-cosa)=f’(η)/sinη; 令h(x)=sinx,h’(x)=cosx≠0(a<x<b), 由柯西中值定理,存在ζ∈(a,b),使得[fB-fA]/(sinb-sina)=f’(ζ)/cosζ, 从而(f’(η)/sinη)(cosa-cosb)=(f’(ζ)/cosζ)(sinb-sina) [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/84x4777K
0

相关试题推荐
随机试题
最新回复(0)