首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P-1AP=α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
已知P-1AP=α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
admin
2019-01-14
32
问题
已知P
-1
AP=
α
1
是矩阵A属于特征值λ=2的特征向量,α
2
,α
3
是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
选项
A、[α
1
,-α
2
,α
3
]
B、[α
1
,α
2
+α
3
,α
2
-2α
3
]
C、[α
1
,α
3
,α
2
]
D、[α
1
+α
2
,α
1
-α
2
,α
3
]
答案
D
解析
若P
-1
AP=A=
P=[α
1
,α
2
,α
3
],则有AP=PΛ,即
A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
即 [Aα
1
,Aα
2
,Aα
3
]=[a
1
α
1
,a
2
α
2
,a
3
α
3
].
可见α
i
是矩阵A属于特征值a
i
(i=1,2,3)的特征向量,又因矩阵P可逆,因此,α
1
,α
2
,α
3
线性无关.
若α是属于特征值λ的特征向量,则-α仍是属于特征值λ的特征向量,故A正确.
若α,β是属于特征值λ的特征向量,则k
1
α+k
2
β仍是属于特征值λ的特征向量.本题中,α
2
,α
3
是属于λ=6的线性无关的特征向量,故α
2
+α
3
,α
2
-2α
3
仍是λ=6的特征向量,并且α
2
+α
3
,α
2
-2α
3
线性无关,故B正确.
关于C,因为α
2
,α
3
均是λ=6的特征向量,所以α
2
,α
2
谁在前谁在后均正确,即C正确.
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
-α
2
不再是矩阵A的特征向量,故D错误.
转载请注明原文地址:https://kaotiyun.com/show/8AM4777K
0
考研数学一
相关试题推荐
求.其中D是由抛物线y2=x,直线x=0,y=1所围成.
求y=x及x=0所围成区域.
将f(x,y)dxdy化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
两个4阶矩阵满足A2=B2,则
证明曲线Γ:x=aetcost,y=aetsint,z=aet与锥面S:x2+y2=z2的各母线(即锥面上点(x,y,z)与顶点的连线)相交的角度相同,其中a为常数.
已知齐次方程组同解,求a和b,并求它们的通解.
设二维连续型随机变量(X,Y)的联合概率密度为(I)求X与Y的相关系数;(Ⅱ)令Z=XY,求Z的数学期望与方差.
三人独立地同时破译一个密码,他们每人能够译出的概率分别为.求此密码能被译出的概率P.
一种资产在未来的支付事先是未知,这样的资产称为风险资产.设一种风险资产未来的支付为X,它的取值依赖于未来的自然状态,设未来所有可能的自然状态为Ω={ω1,ω2,ω3,ω4,ω5},X对状态的依赖关系如下:在未来,观察X的取值能够确定是否发生的事件有哪
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机试题
为根治折返性室上性心动过速,应首选
A.有发热、咳嗽等典型流感样症状B.1周内有接触史,出现流感样症状C.有流行病学史和临床表现,呼吸道分泌物标本甲型流感病毒和H5单克隆抗体抗原检测阳性D.被诊断为疑似病例,且与其有共同暴露史的人被诊断为确诊病例者E.被诊断为疑似病例,出现ARDS者
A.CD3细胞B.GM细胞C.CD5细胞D.CD细胞E.CD8细胞总T细胞
给水工艺预处理方法一般包括()。
书刊印制过程中,印前阶段的工作不包括()。
下列说法不正确的是()。
语法正确但在一定的交际情景中显得不恰当的句子属于隐性偏误。()
有如下程序:#include<iostream>usingnamespacestd;classMusic{public:voidsetTitle(char*str){strcpy(title,str);}protected:char
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。文档“北京政府统计工作年报.docx”是一篇从互联网上获取的文字资料,请打开该文档并按下列要求进行排版及保存操作:
Eachforitsownreason,thestudyofresidentialmobilityhasbeenaconcernofthreedisciplines:sociology,economics,andge
最新回复
(
0
)