首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次线性方程组Ax=b的一个解,ξ1,,…,ξn-r是对应的齐次线性方程组的一个基础解系,证明:(1)η*,ξ1,…,ξn-r线性无关;(2)η*,η*+ξ1,…η*+ξn-r线性无关.
设η*是非齐次线性方程组Ax=b的一个解,ξ1,,…,ξn-r是对应的齐次线性方程组的一个基础解系,证明:(1)η*,ξ1,…,ξn-r线性无关;(2)η*,η*+ξ1,…η*+ξn-r线性无关.
admin
2020-06-05
46
问题
设η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,证明:(1)η
*
,ξ
1
,…,ξ
n-r
线性无关;(2)η
*
,η
*
+ξ
1
,…η
*
+ξ
n-r
线性无关.
选项
答案
(1)设有如下关系式成立 k
0
η
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
=0用矩阵A左乘上式两边,并注意题设条件,得 0=A(k
0
η
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
)=k
0
Aη
*
+k
1
Aξ
1
+…+k
n-r
Aξ
n-r
=k
0
b但b≠0,由上式知k
0
=0,于是有 k
1
ξ
1
+k
2
ξ
2
+…+kk
n-r
ξ
n-r
=0因向量组ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次线性方程组的基础解系,从而它们线性无关,于是k
1
=k
2
=…=k
n-r
=0,由定义知η
*
,ξ
1
,ξ
2
,…,ξ
n-r
线性无关. (2)设有如下关系式成立 k
0
η
*
+k
1
(η
*
+ξ
1
)+…+k
n-r
(η
*
+ξ
n-r
)=0 整理可得 (k
0
+k
1
+…+k
n-r
)η
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
=0 由(1),向量组η
*
,ξ
1
,ξ
2
,…,ξ
n-r
线性无关,故k
1
=k
2
=…=k
n-r
=0,并且k
0
+k
1
+…+k
n-r
=0,于是k
0
=0,故向量组η
*
,η
*
+ξ
1
…,η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/8Av4777K
0
考研数学一
相关试题推荐
设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B—C为
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=0().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+y2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设随机向量(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X与Y的相关系数为,且概率,则()
设A是4阶矩阵,且A的行列式|A|=0,则A中()
(2003年)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π),L为D的正向边界。试证:
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.(Ⅰ)如果EX=μ,DX=σ2,试证明:Xi一(Ⅱ)如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
随机试题
卢梭关于主权的描述,下列说法正确的是
发热是一种常见的________。
下列何种疾病为器官特异性自身免疫病
A.切痂术B.削痂术C.蚕食脱痂D.磺胺嘧啶银冷霜保痂E.清创术
男性,50岁,反复咳嗽、咳痰4年,近半年来发作时常伴呼吸困难。体检:双肺散在哮鸣音,肺底部有湿啰音。肺功能测定:1秒钟用力呼气容积/用力肺活量为55%,残气容积/肺总量为35%。诊断应考虑为
反复使用最可能导致肝坏死的吸入麻醉药是
下列各项中,属于不相容职务的有()。
Ifafarmerwishestosucceed,hemusttrytokeepawidegapbetweenhisconsumptionandhisproduction.Hemuststorealarge
Hadheworkedharder,he______theexams.
Lookingforanewweightlossplan?Trylivingontopofamountain.Mountainaircontainslessoxygenthanairatloweraltitud
最新回复
(
0
)