首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=
admin
2019-11-25
50
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得f(c)=
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=[*],构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上 n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
(1)
1
∈(a
1
,c),ξ
(1)
2
∈(c,a
2
),…,ξ
(1)
n
∈(a
n-1
,a
n
),使得φ’(ξ
(1)
1
)= φ’(ξ
(1)
2
)=…=φ’(ξ
(1)
n
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定 理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有f(c)=[*]f
(n)
(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/8ED4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设X1,X2,…,Xn为来自总体X的一个简单随机样本,X的概率密度为(1)求θ的矩估计量(2)求θ的最大似然估计量
设从均值为μ,方差为σ2(>0)的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为.证明对于任何满足条件a+b=1的常数a,b,都有ET=μ,其中T=,并确定常数a,b,使得方差DT达到最小.
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为αs=α1+2α2+3α3+…+(s一1)αs-1(1)证明齐次线性方程组α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0(
已知方程组(I)及方程组(Ⅱ)的通解为k1[一1,1,1,0]T+k2[2,一1,0,1]T+[一2,一3,0,0]T.求方程组(I),(Ⅱ)的公共解.
已知线性方程组问:(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
当x>0时,曲线y=()
曲线tan(x+y+π/4)=ey在点(0,0)处的切线疗程为_________.
随机试题
听诊心率正常且节律整齐,可排除哪些心律失常
A、巴豆B、火麻仁C、甘遂D、芦荟E、京大戟用于肠燥津枯的药物是
某造纸厂未经当地环保局同意,擅自拆除了污水处理设施并导致超标排污,按照《环境保护法》的规定,对这一行为可实施的行政处罚包括()。
建设项目有行业主管部门的,其环境影响报告书或者环境影响报告表应当().
行政监管的行政法律关系不包括()。
他将得到晋升,因为他工作干得好。
在一次考试中,每班只有几个人及格,大部分同学都在30分至50分之间,说明这次英语考试()
泰勒认为,课程评价是为了找出结果与目标之间的差距,并利用这种反馈信息作为修订课程计划的依据。据此提出的课程评价模式是()
设随机变量X服从参数为λ的指数分布,令求:随机变量Y的分布函数;
minutes
最新回复
(
0
)