首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x)=(2一t)e—tdt的最大值与最小值.
求函数f(x)=(2一t)e—tdt的最大值与最小值.
admin
2017-10-23
68
问题
求函数f(x)=
(2一t)e
—t
dt的最大值与最小值.
选项
答案
由于f(x)是偶函数,我们只需考察x∈[0,+∞).由变限积分求导公式得 [*]. 从而f(x)的最大值是f(*])=∫
0
2
(2—t)e
—t
dt=一∫
0
2
(2—t)de
—t
=(t—2)e
—t
|
0
2
—∫
0
2
e
—t
dt =2+e
—t
|
0
2
=1+e
—2
. 由上述单调性分析,为求最小值,只需比较f(0)与[*]f(x)的大小.由于 [*]f(x)=∫
0
+∞
(2一t)e
—t
dt=[(t一2)e
—t
+e
—t
]|
0
+∞
=1>f(0)=0,从而f(0)=0是最小值.
解析
f(x)的定义域是(一∞,+∞),由于它是偶函数,故只需考虑x∈[0,+∞).求f’(x)和驻点并考察驻点两侧的单调性.由于需要考察f(0)是否为最值,还需求极限值
f(x).
转载请注明原文地址:https://kaotiyun.com/show/8EX4777K
0
考研数学三
相关试题推荐
=________.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求.
设P=,Q为三阶非零矩阵,且PQ=O,则().
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x1)=0.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求需求量等于供给量时的均衡价格pe;
从6双不同的手套中任取4只,求(1)恰有一双配对的概率;(2)至少有2只可配成一双的概率。
随机试题
WhenNeilArmstrongandBuzzAldrinreturnedfromthemoon,theircargoincludednearlyfiftypoundsofrockandsoil,whichwer
被认为是继柏拉图《理想国》之后西方最完整、最系统的教育论著是()
为避免混杂因素影响调查结果,在不同年龄人群调查中,往往采取以下抽样调查方法中的哪一种
A.分离性感觉障碍B.振动觉,位置觉障碍,感觉性共济失调C.病变对侧肢体上运动神经元瘫D.支配肌肉瘫痪,萎缩,肌张力减低E.血管舒缩功能障碍,泌汗障碍
当供应商之间的竞争不充分时,可以通过()的办法降低采购总成本。
一般产品浴盆曲线的三个阶段包括()。
海南杂忆茅盾我们到了那有名的“天涯海角”。原以为这个地方是一条陆地,突入海中,碧涛澎湃,前无去路。但是错了,完全不是那么一回事。所谓“天涯海角”就在公路旁边,相去二三
设二维随机变量(X,Y)的联合密度函数为f(x,y)=求随机变量X,Y的边缘密度函数;
Working-classfamiliesintheUnitedStatesareusuallynuclear,andmanystudiesindicatethatworking-classcouplesmarryfor
Technologyisanothergreatforceforchange.Inpart,technologyhascausedthepopulationexplosion;manyofuswon’tnowbea
最新回复
(
0
)