首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(93年)设二阶常系数线性微分方程y”+αy’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α、β、γ,并求该方程的通解.
(93年)设二阶常系数线性微分方程y”+αy’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α、β、γ,并求该方程的通解.
admin
2018-07-27
78
问题
(93年)设二阶常系数线性微分方程y”+αy’+βy=γe
x
的一个特解为y=e
2x
+(1+x)e
x
,试确定常数α、β、γ,并求该方程的通解.
选项
答案
将y=e
2x
+(1+x)e
x
代入原方程得 (4+2α+β)e
2x
+(3+2α+β)e
x
+(1+α+β)xe
x
=γe
x
比较同类项的系数有 [*] 解得 α=一3,β=2,γ=一1 即原方程为 y"一3y’+2y=一e
x
其特征方程为r
2
一3r+2=0 解得 r
1
=1,r
2
=2 故齐次通解为 [*]=C
1
e
x
+C
2
e
2x
则原方程通解为 y=C
1
e
x
+C
2
e
2x
+e
2x
+(1+x)e
x
解析
转载请注明原文地址:https://kaotiyun.com/show/8Ej4777K
0
考研数学二
相关试题推荐
设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1.0)=__________.
求极限
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续;(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续;(Ⅲ)f(x,y)在点(xo,yo)处可微;(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在;
A是二阶矩阵,有特征值λ1=1,λ2=2,f(x)=x2一3x+4,则f(A)=________.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
求双纽线(x2+y2)2=a2(x2-y2)所围成的面积.
求微分方程xy’+y=xex满足y(1)=1的特解.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井1:3(如图3—5所示).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提
随机试题
如何理解巫术活动是原始审美发生中最重要的一种中介因素?
便利型流通企业的商圈较小,其最大的特点是经营中所提供的()
2007年2月,甲乙丙丁戊五人共同出资设立北陵贸易有限责任公司(简称北陵公司)。公司章程规定:公司注册资本500万元;持股比例各20%;甲、乙各以100万元现金出资,丙以私有房屋出资,丁以专利权出资,戊以设备出资,各折价100万元;甲任董事长兼总经理,负责
[2010年,第119题]按照《建设工程质量管理条例》的规定,施工人员对涉及结构安全的试块、试件以及有关材料进行现场取样时应当()。
先贤苏格拉底有句名言“知识即美德”,后人对此提出质疑:道德可教吗?请以“道德是否可教”为话题进行写作。要求:条理清晰,语言流畅,文体不限,诗歌除外。800字以上。
古希腊的音乐是以诗与乐,或诗、乐、舞三位一体为主的音乐艺术,其中诗的地位在乐之上,曲调和节奏都受歌词抑扬顿挫的影响。()
教育的目的是衡量和评价教育实施效果的根本依据和标准。()(2016.广东)
给付之诉是指对被告享有给付请求权的原告要求人民法院判令被告向自己履行一定给付义务的民事诉讼请求。确认之诉是指原告要求法院确认其所主张的法律关系存在或不存在的民事诉讼请求。确认之诉与给付之诉的区别在于:当事人只要求人民法院确认当事人之间发生争议法律关系的存在
何老师担任班主任的班级里,学生普遍推卸责任和容易激怒。何老师与学生的师生关系类型属于
A、Youcantakeataxi.B、I’llflytoNewYorknextweek.C、It’sabouttwentymiles.D、It’sonlysixhundredyuan.C
最新回复
(
0
)