首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=________.
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=________.
admin
2021-11-25
34
问题
设z=xf(x+y)+g(x
y
,x
2
+y
2
),其中f,g分别二阶连续可导和二阶连续可偏导,则
=________.
选项
答案
f’+xf"+x
y-1
g’
1
+yx
y-1
lnxg’
1
+yx
2y-1
lnxg"
11
+2y
2
x
y-1
g"
12
+2x
y+1
lnxg"
21
+4xyg"
22
解析
由z=xf(x+y)+g(x
y
,x
2
+y
2
)得
=f(x+y)+xf’(x+y)+yx
y-1
g’
1
(x
y
,x
2
+y
2
)+2xg’
2
(x
y
,x
2
+y
2
)
=f’+xf"+x
y-1
g’
1
+yx
y-1
lnxg’
1
+yx
2y-1
lnxg"
11
+2y
2
x
y-1
g"
12
+2x
y+1
lnxg"
21
+4xyg"
22
转载请注明原文地址:https://kaotiyun.com/show/8Zy4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 D
设曲线的参数方程为的曲线段的弧长s=_________
以下四个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。③若∫—∞+∞f(x)
设D为有界闭区域,z=f(χ,y)在D上二阶连续可偏导,且在区域D内满足:≠0,则().
设χ→0时,f(χ)=eχ-为χ的三阶无穷小,求a,b.
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解,试求(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ)该方程组满足x2=x3的全部解。
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.(Ⅰ
设方程组有通解k1ξ1+k2ξ2=k1[1,2,1,一1]T+k2[0,一1,一3,2]T.方程组有通解λ1η1+λ2η2=λ1[2,一1,一6,1]T+λ2[一1,2,4,a+8]T.已知方程组有非零解,试确定参数a的值,并求该非零解.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是()
设一质点在单位时间内由点A从静止开始做直线运动至点B停止,A,B两点间距离为1,证明:该质点在(0,1)内总有一时刻的加速度的绝对值不小于4.
随机试题
当Word“编辑”菜单中的“剪切”和“复制”命令呈浅灰色而不能被选择时,则表示()
下列属于语义场研究的意义的有()
有两种理想气体,第一种的压强记作P1,体积记作V1,温度记作T1,总质量记作m1,摩尔质量记作M1;第二种的压强记作P2,体积记作V2,温度记作T2,总质量记作m2,摩尔质量记作M2。当P1=P2,V1=V2,T1=T2时,则为:
证券公司与客户签订的载入中国证券业协会规定的必备条款的融资融券业务合同应载明的事项包括( )。
甲公司2007年度至2012年度发生的与一栋办公楼有关的业务资料如下:(1)2007年1月1日,甲公司与乙公司签订合同,委托乙公司为其建造一栋办公楼。合同约定,该办公楼的总造价为5000万元,建造期为12个月,甲公司于2007年1月1日向乙公司预付20%
根据中外合资经营企业法律制度的规定,下列关于合营企业注册资本的表述中,正确的是()。
在下列名茶中,未经发酵而制成的有()。
设α1,α2,α3为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的().
ManyOlderDoctorsPlantoPhaseoutTheirPracticeTheresultsofanewsurveyindicatethat48percentofphysiciansbetwe
A、Bycompressingitto4.9milliontimesatmosphericpressure.B、Byheatingituptoextremelyhightemperatures.C、Bycoolingi
最新回复
(
0
)