首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=________.
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=________.
admin
2021-11-25
40
问题
设z=xf(x+y)+g(x
y
,x
2
+y
2
),其中f,g分别二阶连续可导和二阶连续可偏导,则
=________.
选项
答案
f’+xf"+x
y-1
g’
1
+yx
y-1
lnxg’
1
+yx
2y-1
lnxg"
11
+2y
2
x
y-1
g"
12
+2x
y+1
lnxg"
21
+4xyg"
22
解析
由z=xf(x+y)+g(x
y
,x
2
+y
2
)得
=f(x+y)+xf’(x+y)+yx
y-1
g’
1
(x
y
,x
2
+y
2
)+2xg’
2
(x
y
,x
2
+y
2
)
=f’+xf"+x
y-1
g’
1
+yx
y-1
lnxg’
1
+yx
2y-1
lnxg"
11
+2y
2
x
y-1
g"
12
+2x
y+1
lnxg"
21
+4xyg"
22
转载请注明原文地址:https://kaotiyun.com/show/8Zy4777K
0
考研数学二
相关试题推荐
证明:
设函数f(χ)在(-∞,+∞)上连续,其导函数的图形如图所示,则f(χ)有().
设三角形三边的长分别为a,b,c,此三角形的面积为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明:(Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A);(Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵;(Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减小的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进入大气层开始燃烧的前3s内,减小了体积的,问
半径为的圆在抛物线x=凹的一侧上滚动。当圆心以速率V0匀速上升时,求圆心的横坐标ξ的增长速度。
随机试题
下列关于计算机的叙述中,正确的是()
赵某是宝马汽车销售代理商。某日,陈某到赵某处表示愿意购买一辆最新款的跑车,赵某立即表示同意,双方签订了合同。约定陈某付完首付后余款在2年内付清。3个月后,陈某只付了首付,没有按时付款。赵某遂向法院起诉要求陈某承担违约责任。同时陈某的妻子想法院申请宣告陈某为
下列关于场地竖向设计所依据现状高程的表述中,错误的是()。
档案部门接收保管的会计档案需要拆封重新整理时,正确的做法是()。
各种机器的构造不同、工作对象也不同,但是从它们的组成、功能和运动等方面看,具有许多共同点。下面表述它们的共同特征的是()。
委托加工应税消费品的组成计税价格为()。
甲公司是一家从事污水处理业务的上市公司。2014年至2016年有关交易或事项如下:(1)2014年1月313,甲公司中标某市污水改造工程,合同规定该项目于2014年1月开工至2015年12月完工,2016年1月起投入运营,经营满20年后移交当地政府有
根据下表所示的实验设计方案(a、b为两个自变量,S为被试)。在该实验设计中,存在的系统误差主要是
Womenhavelongbeenmoreinnumberthanmenoncollegecampuses.Theyalsoholdmoreadvanceddegreesthantheirmale【C1】______
Mostpeoplewhomarryyoungstartoutlivinghandtomouth.Theunderlinedpartmeans
最新回复
(
0
)