首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
admin
2022-04-10
94
问题
(Ⅰ)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分
的定义;
(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,且
=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y;
(Ⅲ)举例说明(Ⅱ)的逆定理不成立.
选项
答案
(Ⅰ)定义:设z=f(x,y)在点(x
0
,y
0
)的某邻域U内有定义,(x
0
+△x,y
0
+△y)∈U.增量 △z=f(x
0
+△x,y
0
+△y)—f(x
0
,y
0
)[*]A△x+B△y+o(ρ), (*) 其中A,B与△x和△y都无关,ρ=[*]=0,则称f(x,y)在点(x
0
,y
0
)处可微,并称 [*] 为z=f(x,y)在点(x
0
,y
0
)处的微分. (Ⅱ)设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立.令△y=0,于是 [*] (Ⅲ)当f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)存在时,z=f(x,y)在点(x
0
,y
0
)处未必可微.反例: [*] f’
y
(0,0)=0. 两个偏导数存在.以下用反证法证出f(x,y)在点(0,0)处不可微.若可微,则有 △f=f(△x,△y)一f(0,0)=0△x+0△y+o(ρ), [*] 极限值随k而异,(**)式不成立,所以不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/8hR4777K
0
考研数学三
相关试题推荐
求下列幂级数的收敛域:(Ⅲ)unxn的收敛半径R=3;(只求收敛区间)(Ⅳ)an(x一3)n,其中x=0时收敛,x=6时发散.
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设函数f(x)在[0,1]上连续.证明:∫01ef(x)dx∫01e-f(y)dy≥1.
求证:ex+e-x+2cosx=5恰有两个根.
求及arctanx的麦克劳林级数.
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(-1,-3,-4,-7),α4=(2,1,2,3);
设f(x)在x=0处连续,且,则曲线y=f(x)在(0,f(0))处的切线方程为__________.
设则I,J,K的大小关系是()
设则有()
随机试题
设y=f(y)是由方程.xy+lny=0确定的函数,则=().
=____________.
尿糖阳性,除糖尿病外还可能包括
A.四逆散B.逍遥散C.大柴胡汤D.葛根芩连汤E.小柴胡汤
定量分析时,对分离度的要求是在重复性试验中,对峰面积测量值的RSD的要求是
国家统一规定,养老保险的结余要预留相当于()的养老金开支,其余按规定处理。
《旅馆业治安管理办法》规定,饭店对旅客寄存的财物要建立()
简述《中华人民共和国民办教育促进法》的基本原则。
据联合国人口基金预计:如果出生率降到每位妇女平均生两个孩子,到2050年世界人口将达94亿,2200年将达110亿。联合国人口基金报告预i贝0了世界人口分布将发生变化,因为生活在发达地区人口所占的百分比将从1995年的19%降到2150年的10%。1950
[2009年10月]关于x的方程a2x2一(3a2一8a)x+2a2一13a+15=0至少有一个整数根。(1)a=3;(2)a=5。
最新回复
(
0
)