首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 α1=[2,-1,a+2,1]T, α2=[-1,2,4,a+8]T. 求方程组(I)的一个基础解系;
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 α1=[2,-1,a+2,1]T, α2=[-1,2,4,a+8]T. 求方程组(I)的一个基础解系;
admin
2019-08-06
55
问题
设四元齐次线性方程组(I)为
且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=[2,-1,a+2,1]
T
, α
2
=[-1,2,4,a+8]
T
.
求方程组(I)的一个基础解系;
选项
答案
解一 由[*]得到方程组(l)的基础解系为β
1
=[5,-3,1,0]
T
,β
2
=[-3,2,0,1]
T
. 解二 对方程组(I)的系数矩阵作初等行变换,有 [*] 由此可得方程组(I)的一个基础解系为β
1
=[1,0,2,3]
T
,β
2
=[0,1,3,5]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/c5J4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为求E(Z),D(Z);
a,b取何值时,方程组有解?
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设随机变量X服从标准正态分布N(0,1),令Y=|X|,求Y的概率密度.
求函数F(x)=∫01(1一t)|x一t|dt(0≤x≤1)的凹凸区间.
设有一批同型号产品,其次品率记为p.现有五位检验员分别从中随机抽取n件产品,检测后的次品数分别为1,2,2,3,2.(Ⅰ)若已知p=2.5%,求n的矩估计值;(Ⅱ)若已知n=100,求p的极大似然估计值;(Ⅲ)在情况(Ⅱ)下,
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX2+b(X2+X3)2+c(X4+X5+X6)2+e(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算xdxdy.
随机试题
项目竣工质量验收是施工质量控制的最后一个环节,以下关于竣工质量验收条件的说法,正确的是()。
下列现象中,属于光缆传输线路故障的有哪些()
求微分方程x2y’=xy-y2的通解.
女性,35岁,前臂被铁棒击伤,X线片显示尺、桡骨骨折,近端平行排列,而骨折远端则桡骨重叠于尺骨之上。在治疗和康复中关键要防止
痄腮易并发睾丸肿痛的机理是
【背景资料】某工业项目三期扩建工程总建筑面积3.2万平方米,由三个单位工程构成,分别为筒中筒结构塔体、13个连体筒仓和附属建筑,建(构)筑物最大高度为60m,其中塔体最大开挖深度6m,基坑面积19m×16.5m。地层结构自上而下依次为杂填土层(平
审计监督区别于其他经济监督的根本特征是()。
眼睛的视网膜上有很多感光细胞,当光聚到视网膜上,感光细胞有了神经冲动,沿着视神经传到大脑,我们就看到了物体。()
下列哪项不是教师申诉制度的环节?()
从历史上看,美国的繁荣依靠企业不断涌现的新发明,这些发明促使汽车、飞机制造、化工、制药、电子、计算机等领域出现了一批新工业和新产品。因此,经济不断壮大的最好保障是企业在科学研究和发展方面增加经费。以下哪项如果为真,最能削弱以上命题?
最新回复
(
0
)