首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为n维非零列向量,且线性相关,αTα=2,若(αβT)2=2βαT,具体给出两向量间的线性关系.
设α,β为n维非零列向量,且线性相关,αTα=2,若(αβT)2=2βαT,具体给出两向量间的线性关系.
admin
2021-07-27
64
问题
设α,β为n维非零列向量,且线性相关,α
T
α=2,若(αβ
T
)
2
=2βα
T
,具体给出两向量间的线性关系.
选项
答案
依题设,α,β线性相关,即两向量成比例,设比例系数为k,使得β=αk(k≠0),从而有(αβ
T
)
2
=(αβ
T
)αβ
T
=[α(kα)
T
]α(kα)
T
=k
2
(α
T
α)αα
T
=2k
2
αα
T
,而βα
T
=kαα
T
,从而有2k
2
αα
T
=2kαα
T
,即2k(k-1)αα
T
=0.又由于r(αα
T
)=1,αα
T
≠0,故有2k(k-1)=0,解得k=1,因此,β=α.
解析
转载请注明原文地址:https://kaotiyun.com/show/8hy4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是________.
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设A,B均是n阶实对称矩阵,则A,B合同的充分必要条件是()
求微分方程y"+2y’一3y=e-3x的通解.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
随机试题
设计名为mystock的表单(控件名,文件名均为mystock)。表单的标题为:“股票持:有情况”。表单中有两个文本框(text1和text2)和两个命令按钮即“查询”(名称为Command1)和“退出”(名称为Command2)。运行表单时,在文
这个地面标记的含义是预告前方设有交叉路口。
铣床主轴轴向窜动的公差是__________mm。
糖尿病的基本生理变化是()
城市的区位结构不涉及以下哪一项?()
对求助者的尊重不包含()。
Oneofthemostremarkablethingsaboutthehumanmindisourabilitytoimaginethefuture.Inour【C1】______wecanseewhathas
为了落实“最多跑一趟”,解决群众“烦、急、累”的情绪,让你去征求意见,保证准确性,你会重点从哪几个方面开展?
Whatisthepassagemainlyabout?Thephrase"throwone’sweightaround"(Paragraph2)probablymeans______.
资本有机构成是指
最新回复
(
0
)