首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 充要条件是矩阵A=(α1,α2,…,αm)与矩阵B=(β1,β2,…,βm)等价. 55.设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 充要条件是矩阵A=(α1,α2,…,αm)与矩阵B=(β1,β2,…,βm)等价. 55.设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是
admin
2017-06-14
59
问题
设n维向量α
1
,α
2
,…,α
m
(m<n)线性无关,证明:n维向量β
1
,β
2
,…,β
m
线性无关的
充要条件是矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价.
55.设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
选项
答案
必要性.若β
1
,β
2
,…,β
m
线性无关,则r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
m
)=m. 由于矩阵的秩就是其列向量组的秩,所以r(A)=r(B),又A与B均为n×m矩阵,故A与B等价. 充分性.若A与B等价,则r(A)=r(B),因为α
1
,α
2
,…,α
m
线性无关,有r(A)=m. 于是r(β
1
,β
2
,…,β
m
)=m,所以β
1
,β
2
,…,β
m
线性无关. 13题中的条件仅为充分条件,而非必要条件,如 [*] 与α
1
,α
2
不等价,但β
1
,β
2
线性无关. 向量组的等价与矩阵的等价是两个不同的概念.前者表明两个向量组可以互相线性表出,而后者是经初等变换可由一个矩阵变成另一个矩阵.当两个向量组的向量个数-样时,由向量组的等价可得矩阵(α
1
,α
2
,…,α
m
)与(β
1
,β
2
,…,β
m
)等价,但矩阵的等价推不出向量组等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/8pu4777K
0
考研数学一
相关试题推荐
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
(1998年试题,八)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由.
判断下列函数的单调性:
随机试题
被告人向某、张某,在一次公共汽车抢劫案中,打伤钟某,打死万某,人民法院在审理此案的过程中,钟某和万某的儿子提起了附带民事诉讼,共要求赔偿损失约20万元。人民法院为了保证民事判决能够顺利进行,依法查封和扣押了两被告人的部分财产。同时人民法院将万某、钟某和万某
《邵公谏厉王弭谤》中邵公是如何对厉王进行劝谏的?
《执业医师法》规定对考核不合格的医量,卫生行政部门可以责令其暂停执业活动,并接受培训和继续医学教育。暂停期限是3个月至
下列关于锅炉的蒸发系统说法错误的是()。
方先生一家是城市低收入家庭,家里除了方先生夫妇外,还有一个68岁的母亲,和一个无劳动能力的女儿,方先生有一份稳定的工作,他妻子平日里打零工,老母亲和女儿平常待在家中。关于方先生一家的城镇居民基本医疗保险的说法正确的是()。
加强社会管理的重心在社区,改善民生的依托在社区,维护稳定的根基在社区。()
按照资本资产定价原理的说法,可以推出()。
在窗体上画一个命令按钮(其Name属性为Commandl),然后编写如下代码:OptionBaselPrivateSubCommandl_Click()Dimaa=Array(1,2,3,4)j=lFori=4To1
若要求从键盘读入含有空格字符的字符串,应使用函数
MinorityReportA)Americanuniversitiesareacceptingmoreminoritiesthanever.Graduatingthemisanothermatter.B)BarryMill
最新回复
(
0
)