首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1=1,当n≥1时,,证明:数列{an}收敛,并求其极限值.
设a1=1,当n≥1时,,证明:数列{an}收敛,并求其极限值.
admin
2017-04-11
64
问题
设a
1
=1,当n≥1时,
,证明:数列{a
n
}收敛,并求其极限值.
选项
答案
设[*]所以f(x)在[0,+∞)上单调减少,由于a
1
=1,[*].可知a
1
>a
3
>a
2
,而f(x)在[0,+∞)上单调减少,所以有f(a
1
)<f(a
3
)<f(a
2
),即a
2
<a
4
<a
3
,所以a
1
>a
3
>a
4
>a
2
,递推下去就可以得到 a
1
>a
3
>a
5
>…>a
2n-1
>…>a
2n
>…>a
6
>a
4
>a
2
, 由此可以肯定,给定数列的奇数项子数列{a
2n-1
}单调减少且有下界[*],偶数项子数列{a
2n
}单调增加且有上界a
1
=1,所以他们都收敛,设他们的极限分别为正数P和Q,即[*]在a
n+1
=f(a
n
)两边同取n→∞时的极限,根据函数f(x)的连续性,有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/93t4777K
0
考研数学二
相关试题推荐
有两个级数,根据已知条件进行作答。若两个级数:两个都发散,其和如何?
设常数λ>0,且级数________。
判断级数的收敛性,并证明.
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zex所确定,求du。
设f(u,v)具有二阶连续偏导数,且满足,又g(x,y)=f[xy,(x2-y2)]求
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f"(x0)-[f(x)+f’(x)-2f(x0)]/(x-x0)2|≤M/12(x-x0)2,其中x’为z关于x0的对称点.
设A,B为同阶可逆矩阵,则().
一平面圆环形,其内半径为10cm,宽为0.1cm,求其面积的精确值与近似值.
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
随机试题
关于建设工程工期的说法,错误的是()。
U/C矩阵中的功能名称位于()
肺的弹性阻力包括
A、正常细胞不均一性贫血B、正常细胞均一性贫血C、大细胞不均一性贫血D、小细胞不均一性贫血E、小细胞均一性贫血贫血患者MCV为90fl,MCH为30pg,MCHC为333g/L,RDW:23%,该患者贫血类型属于
A.温经汤B.丹栀逍遥散C.固阴煎D.膈下逐瘀汤E.固冲汤治疗痛经气滞血瘀证,宜选用的方剂是
鼓励长期卧床的心力衰竭患者在床上活动下肢,其主要目的是
对非实质性变更的接受,下列条件中使合同成立的有()。
我国商业银行的核心资本包括实收资本、资本公积、盈余公积、未分配利润、少数股权等。()
有人曾______“人工智能是个筐,什么都能往里装”,虽然______,但也说明了现状。通常,当解决问题需要推理、决策、理解、学习这类最基本的技能时,我们才认为它跟人工智能相关。常见的人工智能技术应用有指纹识别、人脸识别、机器翻译等。很多通过机械的计算和机
设四次曲线y=ax4+bx3+cx2+dx+f经过点(0,0),并且点(3,2)是它的一个拐点,过该曲线上点(0,0)与点(3,2)的切线交于点(2,4),则该四次曲线的方程为y=________.
最新回复
(
0
)