首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an为n个n维向量,证明:a1,a2,…,an线性无关的充分必要条件是任一n维向量总可由a1,a2,…,an线性表示.
设a1,a2,…,an为n个n维向量,证明:a1,a2,…,an线性无关的充分必要条件是任一n维向量总可由a1,a2,…,an线性表示.
admin
2019-11-25
50
问题
设a
1
,a
2
,…,a
n
为n个n维向量,证明:a
1
,a
2
,…,a
n
线性无关的充分必要条件是任一n维向量总可由a
1
,a
2
,…,a
n
线性表示.
选项
答案
设a
1
,a
2
,…,a
n
线性无关,对任意的n维向量a,因为a
1
,a
2
,…,a
n
,a一定线性相关,所以口可由a
1
,a
2
,…,a
n
唯一线性表示,即任一n维向量总可由a
1
,a
2
,…,a
n
线性表示. 反之,设任一n维向量总可由a
1
,a
2
,…,a
n
线性表示, 取e
1
=[*],e
2
=[*],…,e
n
=[*],则e
1
,e
2
,…,e
n
可由a
1
,a
2
,…,a
n
线性表示,故a
1
,a
2
,…,a
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以a
1
,a
2
,…,a
n
的秩一定为n,即a
1
,a
2
,…,a
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/99D4777K
0
考研数学三
相关试题推荐
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设常数0<a<1,求
求曲线的一条切线l,使该曲线与切线l及直线x=0,x=2所围成图形的面积最小.
设在区间[e,e2]上,数p,q满足条件px+q≥lnx,求使得积分取得最小值时p,q的值.
已知I(α)=求积分∫-32I(α)dα.
A,B均是n阶矩阵,且AB=A+B.证明A—E可逆,并求(A—E)-1.
设试证明:P(A)+P(B)一P(C)≤1.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=-α1-3α2-3α3,Aα2=4α1+4α2+α3),Aα3=-2α1+3α3。(Ⅰ)求A的特征值;(Ⅱ)求A的特征向量;(Ⅲ)求A*-6E的秩。
求极限=_______.
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
随机试题
腹膜透析的常见并发症是
贺拉斯最重要的美学著作是______。
本-周蛋白尿见于
目眩耳鸣,腰膝酸软,遗精乏力,舌红苔薄,脉弦细数。治法宜用:
干烤法杀灭芽孢的条件是
患者,女,29岁。外感风邪而偏正头痛,恶寒发热,目眩鼻塞,舌苔薄白,脉浮,适合选择
创立大会的职权不包括()
“进口口岸”栏:()。“提运单号”栏:()。
期货公司应当及时将投资者适当性制度实施方案及相关制度报公司所在地中国证监会派出机构备案。()
(复旦大学2011)以下不属于金融抑制内容范围的是()。
最新回复
(
0
)