首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
admin
2018-11-20
38
问题
设α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,其中α
1
,α
2
,…,α
s
是齐次方程组AX=0的基础解系.证明Aβ
1
,Aβ
2
,…,Aβ
t
线性无关.
选项
答案
设c
1
Aβ
1
+c
2
Aβ
2
+…+c
t
Aβ
t
=0.则A(c
1
β
1
+c
2
β
2
+…+c
t
β
t
)=0即c
1
β
1
+c
2
β
2
+…+c
t
β
t
是AX=0的一个解.于是它可以用α
1
,α
2
,…,α
s
线性表示: c
1
β
1
+c
2
β
2
+…+c
t
β
t
=t
1
α
1
+t
2
α
2
+…+t
s
α
s
,再由α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,得所有系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/E5W4777K
0
考研数学三
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
已知F(x),g(x)连续可导,且f’(x)=g(x),g’(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g’(x)-xg(x)=cosx+φ(x),求不定积分∫xf"(x)dx.
已知齐次线性方程组同解,求a,b,c的值。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
已知方程组的一个基础解系为(b11,b12,…,b1.2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
随机试题
肿而色红,皮薄光泽,焮热疼痛者,多肿势或软如绵、馒,或硬如结核,不红不热者,多
右侧结肠癌最多见的大体形态是( )。【2005年考试真题】
世行、亚行的反腐败措施包括()
土地转让是()再转移的行为。
下列有关房地产广告的表述中,错误的是()。
托收业务中的PRICIPAL是指:
十八届三中全会指出,公有制为主体、多种所有制经济共同发展的基本经济制度,是中国特色社会主义制度的重要支柱,也是社会主义市场经济体制的根基。公有制经济和非公有制经济都是社会主义市场经济的重要组成部分,都是我国经济社会发展的重要基础。必须毫不动摇巩固和发展公有
某甲,26岁,1995年因故意伤害罪被判有期徒刑3年,1998年刑满释放。甲服刑前曾借给乙2000元钱。刑满出狱后,甲多次找乙索要,但乙以种种借口不予归还。2001年某日,甲再次到乙家索要欠款,乙不仅拒绝还款,并对甲进行辱骂。甲恼怒之下冲上去与乙厮打在一
反映资本家对工人的剥削程度的公式是()
设某厂家打算生产一批商品投放市场,已知该商品的需求函数为.且最大需求量为6,其中x表示需求量,P表示价格.画出收益函数的图形.
最新回复
(
0
)