首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就常数a的不同取值情况,讨论方程xe—x=a(a>0)的实根.
就常数a的不同取值情况,讨论方程xe—x=a(a>0)的实根.
admin
2019-08-26
129
问题
就常数a的不同取值情况,讨论方程xe
—x
=a(a>0)的实根.
选项
答案
令f (x)=x e
—x
—a.则f’(x)=(1—x)e
—x
,f’’(x)=(x—2)e
x
. 令f’(x)=0,得驻点x=1. 由于当x∈(—∞,1)时,f’(x)>0,f(x)在(—∞,1)单调增加, 当x∈(1,+∞)时,f’(x)<0,f(x)在(1,+∞)内单调减少, 所以f(x)在x=1处取得极大值,即最大值为f(1)=e
—1
—a. 则①当e
—x
—a <0时,即[*]时,f (x)≤f (1)<0,方程x e
—x
=a无实根. ②当
—1
—a=0,即[*]时,只有f (1)=0,而当x≠l时,f (x)< f (1)=0,方程x e
x
=a只有一个实根x=1. ③当e
—1
—a >0,即[*],f (x)在(—∞,1)内单调增加,则f (x)=0在(—∞,1)内只有一个实根. 又因[*] f (x)在(1,+∞)内单调递减,则f (x)=0在(1,+∞)内只有一个实根. 所以方程x e
x
=a正好有两个实根。
解析
【思路探索】先确定函数的极值(或最值),然后利用函数的几何形态讨论确定方程根的个数情况.
转载请注明原文地址:https://kaotiyun.com/show/6vJ4777K
0
考研数学三
相关试题推荐
求线性方程组的通解,并求满足条件x12=x22的所有解.
设A是nz×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设随机变量X和Y的联合密度为求条件概率P{Y>1|X<0.5}.
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______。
设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1).(1)求X的数学期望EX(记EX为b);(2)求μ的置信度为0.95的置信区间;(3)利用上述结果求b的置信度为0.
(2001年)某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元.若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是______.
设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=_______.
设矩阵A=,且A3=0.(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
随机试题
孟尝君怪其疾也,衣冠而见之。
患者男,因烧伤被送来急诊室,在评估病人时,护士注意到病人的眉毛和鼻毛都没有了。这类型的烧伤属于
2015年1月1日,甲公司从二级市场购入乙公司分期付息、到期还本的债券12万张,以银行存款支付价款1050万元,另支付相关交易费用12万元。该债券系乙公司于2014年1月1日发行,每张债券面值为100元,期限为3年,票面年利率为5%,每年年末支付当年度利息
因素比较法的优点有()。
负责初中教师资格认定的教育行政部门是()
下面不属于水彩画“干画法”技法的是()。
师生关系表现在人格上的特征是()
学生所享有的受他人尊重、保持良好形象及尊严的权利指学生的()。
差分方程yx+1一的通解是________.
A、Thebeachisapopulartouristresort.B、Theemergencyservicesareefficient.C、Thebeachisagoodplacetowatchthetide.
最新回复
(
0
)