首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 已知线性方程组AX=β有解但不惟一,试求 正交矩阵Q,使QTAQ为对角矩阵.
设矩阵 已知线性方程组AX=β有解但不惟一,试求 正交矩阵Q,使QTAQ为对角矩阵.
admin
2018-07-26
37
问题
设矩阵
已知线性方程组AX=β有解但不惟一,试求
正交矩阵Q,使Q
T
AQ为对角矩阵.
选项
答案
由a=-2知 [*] 得A的特征值为λ
1
=0,λ
2
=3,λ
3
=-3. 对于λ
1
=0,解方程组(0E-A)X=0,由 [*] 得对应的特征向量为α
1
=(1,1,1)
T
,单位化,得对应的单位特征向量为 [*] 对于λ
2
=3,解方程组(3E-A)X=0,由 [*] 得对应的特征向量为α
2
=(1,0,-1)
T
.单位化,得对应的单位特征向量为 [*] 对于特征值-3,解方程组(-3E-A)X=0,由 [*] 得对应的特征向量为e
3
=(1,-2,1)
T
,单位化,得对应的单位特征向量为 [*] 故所求的正交矩阵为 Q=[e
1
e
2
e
3
] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/9HW4777K
0
考研数学三
相关试题推荐
设某商品的需求量Q是单价P(单位:元)的函数Q=12000-80P;商品的总成本C是需求量Q的函数C=25000+50Q;每单位商品需要纳税2元,试求使销售利润最大的商品单价和最大利润额.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
求y’’-7y’+12y=x满足初始条件y(0)=的特解.
求微分方程(x-4)y4dx-x3(y2-3)dy=0的通解.
已知线性方程组的通解是(2,1,0,3)T+k(1,-1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
假设随机事件A与B相互独立,,求a的值.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设D是位于曲线下方,x轴上方的无界区域.(Ⅰ)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
随机试题
(-∞.2)
乙公司欠甲公司30万元,同时甲公司须在2000年9月20日清偿对乙公司的20万元货款。甲公司在同年9月18日与丙公司签订书面协议,转让其对乙公司的30万元债权。同年9月24日,乙公司接到甲公司关于转让债权的通知后,便主张20万元的抵销权。下列说法哪些是正确
绝对柔性基础在均匀受压时,基底反力分布图形简化为:
下列不属于货币国债的是()。
某工程项目,建设单位与施工单位按照《建设工程施工合同(示范文本)》签订了施工合同。合同工期为9个月,合同总价为840万元。工程师批准的施工进度计划如图5-1所示(时间单位:月),各项工作均按照最早时间安排且匀速施工,施工单位的部分报价如表5-3所示。施工合
某技术方案设计生产能力12万台/年,固定成本1200万元/年,产品售价为1000元/台,变动成本为650元/台,销售税金及附加50元/台,求年利润为600万元时的生产能力利用率为()。
其他单位如果因特殊原因需要使用原始凭证时,经本单位负责人批准()。
下列字符中,其ASCII码值最大的是
CourageSomeoftheworld’soldestandbeststoriesareaboutcourage.Theyarestoriesthatpeoplealwayswanttohear,and
The"standardofliving"ofanycountrymeanstheaverageperson’s【C1】______ofthegoodsandservicesthecountryproduces.Ac
最新回复
(
0
)