首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 已知线性方程组AX=β有解但不惟一,试求 正交矩阵Q,使QTAQ为对角矩阵.
设矩阵 已知线性方程组AX=β有解但不惟一,试求 正交矩阵Q,使QTAQ为对角矩阵.
admin
2018-07-26
26
问题
设矩阵
已知线性方程组AX=β有解但不惟一,试求
正交矩阵Q,使Q
T
AQ为对角矩阵.
选项
答案
由a=-2知 [*] 得A的特征值为λ
1
=0,λ
2
=3,λ
3
=-3. 对于λ
1
=0,解方程组(0E-A)X=0,由 [*] 得对应的特征向量为α
1
=(1,1,1)
T
,单位化,得对应的单位特征向量为 [*] 对于λ
2
=3,解方程组(3E-A)X=0,由 [*] 得对应的特征向量为α
2
=(1,0,-1)
T
.单位化,得对应的单位特征向量为 [*] 对于特征值-3,解方程组(-3E-A)X=0,由 [*] 得对应的特征向量为e
3
=(1,-2,1)
T
,单位化,得对应的单位特征向量为 [*] 故所求的正交矩阵为 Q=[e
1
e
2
e
3
] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/9HW4777K
0
考研数学三
相关试题推荐
证明不等式:
求微分方程y’’+2y’-3y=ex+x的通解.
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
已知向量组α1=(1,2,-1,1)T,α2=(2,0,a,0)T,α3=(0,-4,5,1-a)T的秩为2,则a=______.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
随机试题
法律权利与法律义务的相互关系有()。
经济学家:现在中央政府是按照GDP指标考量地方政府的政绩。要提高地方的GDP,需要大量资金。在现行体制下,地方政府只有通过转让土地才能筹集大量资金。要想高价拍卖土地,则房价必须高,因此地方政府有很强的推高房价的动力。但中央政府已经出台一系列措施稳定房价,如
大量咯血常见于
炒制的目的不包括
在哪一种咬合类型下,发生牙尖折裂的概率最大
A.土元B.水元C.火元D.风元E.空
A.红色色标B.蓝色色标C.绿色色标D.黄色色标E.黑色色标零货称取库(区)为()
灰土地基竣工后地基强度必须达到设计要求的标准,关于其检验数量说法错误的是()。
根据以下资料,回答问题。2011年发现违法用地行为7.0万件,涉及土地5.0万公顷(耕地1.8万公顷),同比分别上升5.8%、11.0%(耕地下降2.4%)。立案查处违法用地案件4.2万件,涉及土地4.4万公顷(耕地1.5万公顷),同比分别上升2.5%、
学生学习汉语拼音的同时学习英语,如果不能辨别某些字母的发音区别,发生的学习迁移的类型是
最新回复
(
0
)