首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用两种方案进行某种产品的销售,得部分销售量为: A方案:140,138,143,142,144,139; B方案:135,140,142,136.135,140. 设两种方案下的销售量均服从正态分布,试在α=0.05下检验两种方案的
用两种方案进行某种产品的销售,得部分销售量为: A方案:140,138,143,142,144,139; B方案:135,140,142,136.135,140. 设两种方案下的销售量均服从正态分布,试在α=0.05下检验两种方案的
admin
2018-07-30
46
问题
用两种方案进行某种产品的销售,得部分销售量为:
A方案:140,138,143,142,144,139;
B方案:135,140,142,136.135,140.
设两种方案下的销售量均服从正态分布,试在α=0.05下检验两种方案的平均销售量有无显著差异(t
0.975
(10)=2.228,F
0.975
(5,5)=7.15,下侧分位数.提示:先检验方差相等).
选项
答案
设A、B方案下的销售量分别为总体X和Y,则X~N(μ
1
,σ
1
2
),Y~N(μ
2
,σ
2
2
). ①先检验H
0
:σ
1
2
=σ
2
2
, 拒绝域为F=[*](n-1,m-1),并F≥[*](n-1,m-1). 这里算得S
χ
2
=5.6,S
y
2
=9.2,F=0.608 7, [*] 故[*](n-1,m-1)<F<[*](n-1,m-1),接受H
0
; ②又检验H
0
:μ
1
=μ
2
,拒绝域为 [*] 而n=m=6,[*]=141,[*]=138,故[*]=3,而 [*] 接受H
0
,即认为用两种方案得到的销售量没有显著差异.
解析
转载请注明原文地址:https://kaotiyun.com/show/9JW4777K
0
考研数学三
相关试题推荐
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,-1,a+1,5)T线性相关,则a=_______.
已知A是3阶非零矩阵,且aij=Aij(=1,2,3),证明A可逆,并求|A|.
设齐次线性方程组经高斯消元化成的阶梯形矩阵是,则自由变量不能取成
设随机变量X和Y的联合概率分布服从G={(x,y)|x2+y2≤r2}上的均匀分布,则下列服从相应区域上均匀分布的是
求a的范围,使函数f(x)=x3+3ax2-ax1既无极大值又无极小值.
求函数y=的单调区间,极值点及其图形的凹凸区间与拐点.
设某商品的需求量Q与价格P的函数关系为Q=100-5P.若商品的需求弹性的绝对值大于1,则该商品价格P的取值范围是_______.
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
设某产品总产量Q的变化率为f(t)=200+5t-,求:(Ⅰ)在2≤t≤6这段时间中该产品总产量的增加值;(Ⅱ)总产量函数Q(t).
设10件产品中有4件不合格,从中任取两件,已知两件中有一件不合格,则另一件产品也不合格的概率为________.
随机试题
工程计量的方法主要有()。
必须设置内部撑杆或外部拉杆的模板包括()。
A、 B、 C、 D、 C第1行的每个图形均由4条边组成;第2行的每个图均由5条边组成;第3行的每个图均由6条边组成。故正确答案为C。
朋友从网络上传来著名生物学家道金斯《解析彩虹》中译本书稿嘱评。其中提到诗人济慈认为牛顿用三棱镜将太阳光分解成红、橙、黄、绿、青、蓝、紫的光谱,使彩虹的诗意丧失殆尽,因此科学不仅不美,还会破坏美感。这位19世纪英国著名诗人的声音在当代也会产生回响。自
只有具有一定文学造诣且具有生物学专业背景的人,才能读懂这篇文章。
设A,B为n阶矩阵,则如下命题:①若A2~B2,则A~B;②若A~B且A,B可逆,则A-1+A2~B-1+B2;③若A,B特征值相同,则A~B;④若A~B且A可相似对角化,则B可相似对角化,其中正确的命题为().
TheRivalryofE-mailIndustryItlookslikeagreattimeforE-mailbutalousytimeforE-mailapplications.Web-basedmai
设计名为fornlbook的表单(控件名为form1,文件名为fonnbook)。表单的标题设为“图书情况统计”。表单中有一个组合框(名称为Combol)、一个文本框(名称为Text1)和两个命令按钮“统计”(名称为Command1)和“退出”(名称为
以下程序的输出结果是#includestructst{intx;int*y;}*p;intdt[4]={10,20,30,40};structstaa[4]={50,&dt[0],60,&dt[0],60,&dt[
Insuranceisthesharingofrisks.Nearlyeveryoneisexposedtorisksofsomesort.Thehouseowner,forexample,knowsthathi
最新回复
(
0
)