首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列关于向量组线性相关性的说法正确的个数为( ) ①如果α1,α2,…,αn线性相关,则存在全不为零的数k1,k2,…,kn,使得k1α1+k2α2+…+knαn=0; ②如果α1,α2,…,αn线性无关,则对任意不全为零的数k1,k2,…,kn
下列关于向量组线性相关性的说法正确的个数为( ) ①如果α1,α2,…,αn线性相关,则存在全不为零的数k1,k2,…,kn,使得k1α1+k2α2+…+knαn=0; ②如果α1,α2,…,αn线性无关,则对任意不全为零的数k1,k2,…,kn
admin
2020-03-01
75
问题
下列关于向量组线性相关性的说法正确的个数为( )
①如果α
1
,α
2
,…,α
n
线性相关,则存在全不为零的数k
1
,k
2
,…,k
n
,使得k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0;
②如果α
1
,α
2
,…,α
n
线性无关,则对任意不全为零的数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
≠0;
③如果α
1
,α
2
,…,α
n
线性无关,则由k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0可以推出k
1
=k
2
=…=k
n
=0;
④如果α
1
,α
2
,…,α
n
线性相关,则对任意不全为零的常数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
对于①,线性相关的定义是存在不全为零的常数k
1
,k
2
,…,k
n
,使得k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。不全为零与全不为零不等价,故①错。
②和③都是向量组线性无关的等价描述,正确。
对于④,线性相关性只是强调不全为零的常数k
1
,k
2
,…,k
n
的存在性,并不一定要对任意不全为零的k
1
,k
2
,…,k
n
都满足k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,故④错误。事实上,当且α
1
,α
2
,…,α
n
全为零向量时,才能满足对任意不全为零的常数k
1
,k
2
,…,k
n
都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
综上所述,正确的只有两个。故选B。
转载请注明原文地址:https://kaotiyun.com/show/9MA4777K
0
考研数学二
相关试题推荐
设α=(1,2,3),β=,矩阵A=αTβ,则An(n=2,3,…)=_______.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’(2)=____________.
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
设函数则f’(x)=______。
计算二重积分xydσ,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成。
(91年)曲线y=(x一1)(x一2)和x轴围成一平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
设函数u=f(x,y)具有二阶连续偏导数,且满足等式,确定a,b的值,使等式在变换ξ=x+ay,η=x+by下化简为。
[2012年]设an>0(n=1,2,3,…),Sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的().
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明结论。
随机试题
纯化效果最好的单克隆抗体提纯方法是
A.饮食治疗 B.正规胰岛素 C.长效胰岛素(精蛋白锌胰岛素) D.口服降血糖药 E.口服降血糖药加小剂量胰岛素型糖尿病治疗选择
留取24小时尿标本做17-酮类固醇检查,为防止尿中激素被氧化,标本中应加
在微波通信系统中,不属于分路系统的是()。
()主要用于冷热水管、消防水管系统、工业管道系统。
长江流域,无疑也是中华民族文化的______之一。考古发现______,旧石器时代处于长江上游今云南境内的元谋人,与黄河流域今陕西境内的蓝田人______。这个结论具有划时代的意义。填入横线部分最恰当的一项是()。
【2012年广东省第60题】农民小李到农贸市场卖水果,苹果、梨、橘子、桃四种水果各一箱。苹果、梨、橘子三箱水果,平均每箱51个;梨、橘子、桃三箱水果,平均每箱47个;苹果、桃两箱水果,平均每箱43个。则苹果共有()个。
破解发展难题,厚植发展优势,必须牢固树立并切实贯彻创新、协调、绿色、开放、共享的发展理念。协调()
在Cisco路由器全局配置模式下,创建或修改SNMP视阈的命令是()。
Americansfinditdifficulttothinkaboutoldageuntiltheyarepropelledintothemidstofitbytheirownagingandthatof
最新回复
(
0
)