首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
admin
2016-04-11
61
问题
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
选项
答案
必要性:设ε
j
为E
m
的第j个列向量,由必要性假定,方程组Ax=ε
j
有解c
j
,即Ac
j
=ε
j
,(j=1,2,…,m),→A[c
1
c
2
… c
m
]=[ε
1
ε
2
…ε
m
]=E
m
,记C=[c
1
c
2
… c
m
],则有AC=E
m
,故m=r(E
m
)=r(AC)≤r(A)≤m,→r(A)=m;充分性:设r(A)=m,即A的行向量组线性无关,故[*]的行向量组线性无关,从而有[*]=m,由有解判定定理,知方程组Ax=b有解(其中[*]=[A | b]).
解析
转载请注明原文地址:https://kaotiyun.com/show/9Nw4777K
0
考研数学一
相关试题推荐
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设f(x)在[a,b]上连续可导,且f(a)=0,证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设有三个线性无关的特征向量,求a及An.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________。
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)若将容器内盛满的水从顶端全部抽出,至少需做功多少?
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
随机试题
用皮托管来测量气体流速时,其测出来的流速是指()。
男女成熟的生殖细胞的结合过程称为受精。()
据《素问.生气通天论》,“开阖不得,寒气从之”则生
如果宏发公司未能交货是因为茶农的茶叶被其他公司以高价买走,宏发公司能否以此为理由主张免除违约责任?为什么?如果当地山茶叶由于暴雨而减产,如要完成供货任务,宏发公司必须付出上千万元的价款购买山茶,能否以此为理由请求不再履行?为什么?
下列()情况可以反映会计电算化系统进行数据备份和恢复的重要性。
计算跟踪误差的第一步是()。
某企业对材料采用计划成本核算。月初结存材料计划成本为130万元,材料成本差异为节约20万元。当月购入材料一批,实际成本110元,计划成本120万元,领用材料的计划成本为100万元。该企业当月领用材料的实际成本为()万元。
A、 B、 C、 D、 D
A、 B、 C、 C
Freshfruitsandvegetablesaregenerallylessexpensivewhentheyarein______.
最新回复
(
0
)