首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
admin
2022-04-08
115
问题
α
1
,α
2
,α
3
是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Ax=b的通解x=( ).
选项
A、
B、
C、
D、
答案
C
解析
【思路探索】根据非齐次线性方程组解的结构,依次求出其导出组的基础解系和自身的一个特解即可.
根据线性方程组解的性质,可知2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)是非齐次线性方程组
Ax=b导出组Ax=0的一个解.因为R(A)=3,所以Ax=0的基础解系含4-3=1个解向量,而2α
1
-(α
2
+α
3
)=(2,3,4,5)
T
≠0,故是Ax=0的一个基础解系.因此Ax=b的通解为
α
1
+c(2α
1
-α
2
-α
3
)=(1,2,3,4)
T
+c(2,3,4,5)
T
,即(C)选项正确.对于其他几个选项,
(A)选项中(1,1,1,1)
T
=α
1
-(α
2
+α
3
),
选项(B)中(0,1,2,3)
T
=α
2
+α
3
,
选项(D)中(3,4,5,6)
T
=3α
1
-2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以(A)、(B)、(D)项均不正确.
故应选(C).
【错例分析】本题常见错误是未能准确求出Ax=0的基础解系,主要原因是错将α
2
+α
3
当作Ax=b的解,从而导致错误.
转载请注明原文地址:https://kaotiyun.com/show/pIf4777K
0
考研数学二
相关试题推荐
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
设f(x)是(-∞,+∞)内的偶函数,并且当X∈(-∞,0)时,有f(x)=x+2,则当x∈(0,+∞)时,f(x)的表达式是[].
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为()
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1=
曲线的渐近线有().
设当χ→时,(χ-sinχ)ln(1+χ)是比-1高阶的无穷小,而-1是比(1-cos2t)dt高阶的无穷小,则行为().
设a为常数,则f(x)在区间(一∞,+∞)内的零点个数情况为()
设函数f(x)连续,若,其中区域Duv为图1—4—1中阴影部分,则=()
设积分区域D1={(x,y)|(x一2)2+(y—1)2≤2},D2={(x,y)|x2+(y+1)2≤2),下列选项正确的是()
设周期为4的函数f(χ)处处可导,且,则曲线y=f(χ)在(-3,f(-3))处的切线为________.
随机试题
习惯法不存在于下列何种社会之中()
男,68岁,高血压,曾有夜间阵发性呼吸困难发作史,因术后快速补液3000ml,突发呼吸困难而端坐,查体:心率135次/分,两肺背部闻及湿罗音,最可能的诊断是
国际残疾人年是
按体积折算重量的货物,要准确填写货物的()。
甲企业采用应收账款余额百分比法核算坏账损失。2013年1月1日,“应收账款”账户的余额为1000000元,坏账准备账户的余额为5000元;2013年12月31日,“应收账款”账户的余额为800000元,2013年末应计提的坏账准备4000元。2013年度发
短时记忆的容量一般为()个项目。
【材料(大意)】近年来,随着网络时代的到来以及电子产品的普及,人们越来越喜欢通过网络或是利用电子产品阅读图书,如此阅读方式既快捷又便利。与电子书目益受欢迎相比,我国的纸质图书阅读量却呈现下滑趋势,选择阅读纸质图书的读者越来越少。据调查,造成电子书
中国是一个“酒大国”,每饭必酒已成了社会文化。“感情深”就要“一口闷”。酒精麻醉中,什么交通规则、交通危害,都被扔到了九霄云外。有这种无所畏惧的酒文化,即使“酒驾”能暂时风平浪静,“严查”过后,“酒迷瞪”仍会死灰复燃。宴请气氛固然重要,但安全规劝更该注重。
根据《中华民国临时约法》的规定,通过约法修正案的赞成票应占出席议员的比例是()。(2010法单20)
微调
最新回复
(
0
)