首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
admin
2022-04-08
74
问题
α
1
,α
2
,α
3
是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Ax=b的通解x=( ).
选项
A、
B、
C、
D、
答案
C
解析
【思路探索】根据非齐次线性方程组解的结构,依次求出其导出组的基础解系和自身的一个特解即可.
根据线性方程组解的性质,可知2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)是非齐次线性方程组
Ax=b导出组Ax=0的一个解.因为R(A)=3,所以Ax=0的基础解系含4-3=1个解向量,而2α
1
-(α
2
+α
3
)=(2,3,4,5)
T
≠0,故是Ax=0的一个基础解系.因此Ax=b的通解为
α
1
+c(2α
1
-α
2
-α
3
)=(1,2,3,4)
T
+c(2,3,4,5)
T
,即(C)选项正确.对于其他几个选项,
(A)选项中(1,1,1,1)
T
=α
1
-(α
2
+α
3
),
选项(B)中(0,1,2,3)
T
=α
2
+α
3
,
选项(D)中(3,4,5,6)
T
=3α
1
-2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以(A)、(B)、(D)项均不正确.
故应选(C).
【错例分析】本题常见错误是未能准确求出Ax=0的基础解系,主要原因是错将α
2
+α
3
当作Ax=b的解,从而导致错误.
转载请注明原文地址:https://kaotiyun.com/show/pIf4777K
0
考研数学二
相关试题推荐
设A,B均为n阶对称矩阵,则不正确的是()
设A,B均是n阶矩阵,下列命题中正确的是
设f(x)是(-∞,+∞)内的偶函数,并且当X∈(-∞,0)时,有f(x)=x+2,则当x∈(0,+∞)时,f(x)的表达式是[].
设y=y(χ)为微分方程2χydχ+(χ2-1)dy=0满足初始条件y(0)=1的解,则y(χ)dχ为().
设三阶矩阵A的特征值是0,1,一1,则下列选项中不正确的是()
设A是m×n矩阵,C是n阶可逆阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则()
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
某五元齐次线性方程组的系数矩阵经初等变换化为,则自由变量可取为①x4,x5;②x3,x5;③x1,x5;④x2,x3。那么正确的共有()
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是()
设积分区域D1={(x,y)|(x一2)2+(y—1)2≤2},D2={(x,y)|x2+(y+1)2≤2),下列选项正确的是()
随机试题
运输者、仓储者对产品质量负有责任的,产品制造者、销售者()要求赔偿损失。
试述国际货币基金组织的职能。
接受131I治疗的患者,出院时允许的最大活度为
潘某的一头牛走失,被刘某发现。刘某将牛牵回家关进自己家的牛棚,准备第二天再寻找失主。但当晚牛棚倒塌,将牛压死,刘某将牛肉出售,得款200元。将牛皮出售,得款50元。因请人屠宰及销售牛肉,花去费用50元。在此情况下,下列说法中哪些是正确的?()
汇率波动受黄金输送费用的限制,各国国际收支能够自动调节,这种货币制度是()。
2015年5月1日颁布的《存款保险条例》最高赔付限额为人民币()万元。
Foryears,Europeanshavebeenusing"smartcards"topaytheirwaythroughtheday.Theyusetheminshopsandrestaurants,plu
WhendothepostofficesopenintheUS?
TheArtofPublicSpeakingIfyouweretotape-recordoneofDavidLetterman’scomedyroutines,memorizeitwordforword,a
Attractingandfeedingwildbirdsareentertainingactivitiesthathavelongbeenenjoyedbypeopleallovertheworld.Feeding
最新回复
(
0
)