首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=5x12+5x22+cx32—2x1x2+6x1x3—6x2x3的秩为2。 指出方程f(x1,x2,x3)=1表示何种二次曲面。
二次型f(x1,x2,x3)=5x12+5x22+cx32—2x1x2+6x1x3—6x2x3的秩为2。 指出方程f(x1,x2,x3)=1表示何种二次曲面。
admin
2018-12-29
76
问题
二次型f(x
1
,x
2
,x
3
)=5x
1
2
+5x
2
2
+cx
3
2
—2x
1
x
2
+6x
1
x
3
—6x
2
x
3
的秩为2。
指出方程f(x
1
,x
2
,x
3
)=1表示何种二次曲面。
选项
答案
由特征值可知f(x
1
,x
2
,x
3
)=1表示椭圆柱面。
解析
转载请注明原文地址:https://kaotiyun.com/show/9RM4777K
0
考研数学一
相关试题推荐
计算
A、 B、 C、 D、 C因为当故选C.
利用曲面的面积公式推导坐标xOy平面上光滑曲线y=f(x)≥0在区间[a,b]上绕x坐标轴旋转一周所得曲面的表面积的公式.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求正交矩阵Q,使得QTAQ为对角矩阵.
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
计算曲线积分,其中L是从点A(一a,0)经上半椭圆(y≥0)到点B(a,0)的弧段.
已知二次型f(x1,x2,x3)=x12+x22+cx32+2ax1x2+2x1x3经正交变换化为标准形y12+2y32则a=______.
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
随机试题
与古希腊的命运悲剧强调人与命运抗争的悲惨结局不同,古典主义时期重视崇高的悲剧,其强调的是【】
患者,女性,58岁。外阴菜花样肿物,经病理检查为外阴鳞状细胞癌Ⅰ期,未见转移征象,该患者的治疗首选()
有关癌症肿块的特征。不正确的是
某施工单位负责一在建石油化工装置的管道安装工程、设备安装工程的施工。由于中标时间距工程的开工时间很短,所以该施工单位在工程开工后,才完成施工组织设计的编制工作。施工过程中,建设单位对该施工单位的施工质量很满意,将装置内的保温工程、防火工程也交由该施工单位进
下列关于中小企业的说法中,正确的有()。
下列现象中可以归入到学习中的现象有()。
专家通过对工作场所安全性的研究发现:当建筑工人的工作负荷增加时,工人的受伤率会增加。由于在工作负荷增加时,没有经验的工人常常被雇用,因此,受伤率的增加无疑是由于没有经验工人的高事故率所致。以下哪一项如果正确,最能削弱题干结论?()
下图是有关网民性别结构的数据资料。以下结论从材料中无法推出的一项是()。
某报告显示,随着家庭收入的增加,中国儿童平均身高增加。家庭人均年收入最低组的城市男、女生和农村男、女生与家庭人均收入最高组相比,平均身高分别低3.8cm、3.2cm、5.1cm、5.4cm。因此,专家认为越是贫穷家庭的孩子,身高越低。以下哪项如果为真,最
A、 B、 C、 C(A)把文件放到桌子上的人是提问者,回答者说我没有把文件放在那里,是不合适的。(B)不要听到Whatdidyoudo就认为是在询问过去的职业。(C)告诉Brian把文件放到抽屉里了,告诉了文件的
最新回复
(
0
)