首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.
admin
2017-06-14
84
问题
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)
T
与(1,-1,a)
T
,求Ax=0的通解.
选项
答案
因为A是实对称矩阵,必可相似对角化,有 [*] 知r(A)=2. 对应实对称矩阵不同特征值的特征向量相互正交,有 1+(-2)+a=0,得a=1,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,由正交性,有 [*] 得α=(1,0,-1)
T
是A属于λ=0的特征向量,亦即Ax=0的解. 由于n-r(A)=3—2=1,可见α是Ax=0的基础解系,所以Ax=0的通解是k(1,0,-1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ypu4777K
0
考研数学一
相关试题推荐
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
随机试题
关于病理缩复环不正确的是
A.异体真皮+自体薄皮B.大张中厚皮,多用于功能部位C.应用轧皮机在中厚皮片切出网孔D.皮片大小通常为0.5cm×0.5cm,皮片间距1.0cmE.创面为肉芽组织复合皮移植的特点是
为实现项目的进度目标,在理顺组织的前提下,( )显得十分重要。
“剪切”按钮的快捷键是Ctrl+X。 ( )。
下列情形中,可以认为非居民企业在中国设有机构、场所的有()。
成长小组组员之间已相当熟悉,聚会时均能积极表达自己的意见,讨论非常热烈,互不相让,还出现个别组员为获得更多的支持,出言贬低他人的行为。社会工作者小李细心倾听组员的意见,不时点头,并指出小组面临的冲突,让他们一起面对,寻求处理的办法。小李运用的小组技巧有(
发现第一颗“北京人”头盖骨的科学家是()。
有人认为鸡蛋黄的黄色跟鸡所吃的绿色植物性饲料有关,为了验证这个结论,下面哪种实验方法最可靠?()
考查下列文法:G(VT,VN,E,P)其中:VT={+,*,(,),i)VN={E,T,F}E是开始符号P:E→E+T|TT→T*F|FF→(E)|IF*F+T是该文法的一个句型,其中,(28)是句柄,(29)是素短语(30)是该句型的直
搜索考生文件夹下的YOU.TXT文件,然后将其复制到考生文件夹下的GAH文件夹中。
最新回复
(
0
)