首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.
admin
2017-06-14
50
问题
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)
T
与(1,-1,a)
T
,求Ax=0的通解.
选项
答案
因为A是实对称矩阵,必可相似对角化,有 [*] 知r(A)=2. 对应实对称矩阵不同特征值的特征向量相互正交,有 1+(-2)+a=0,得a=1,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,由正交性,有 [*] 得α=(1,0,-1)
T
是A属于λ=0的特征向量,亦即Ax=0的解. 由于n-r(A)=3—2=1,可见α是Ax=0的基础解系,所以Ax=0的通解是k(1,0,-1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ypu4777K
0
考研数学一
相关试题推荐
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
随机试题
有限责任公司和股份有限公司的设立有一些相同之处,下列说法中正确的有()。
杜摩兰的()原则,现在已成为选择契约准据法的一项普遍接受的原则。
在PowerPoint演示文稿中,在插入了一张来自文件的图片后,可以对该图片进行复制、移动、删除、改变大小等操作。()
关于A房地产公司与某市政府之间订立的土地使用权出让合同,下列说法错误的是()。关于A房地产公司未如期动工开发,下列说法正确的是()。
城市道路路面的使用要求指标包括()。
现浇混凝土质量评价的主要内容是其()。
发审委会议表决采取记名投票方式,同意票数达到()票为通过。
布置课外作业的目的是()。
设随机变量Xi(i=1,2)同分布,且满足P{X1X2=0}=1,则X1与X2()
InFrance,allschoolsfollowthesamebasiccurriculum.Frenchchildrenenterschoolattheageof6.
最新回复
(
0
)