首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 已知tr(A)=a≠0.证明:矩阵A相似于对角矩阵.
设n阶矩阵 已知tr(A)=a≠0.证明:矩阵A相似于对角矩阵.
admin
2018-09-25
38
问题
设n阶矩阵
已知tr(A)=a≠0.证明:矩阵A相似于对角矩阵.
选项
答案
设α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
,则矩阵A=αβ
T
. 于是 A
2
=AA=(αβ
T
)(αβ
T
)=(β
T
α)αβ
T
[*] =tr(A).A=aA. 设λ是A的特征值,ξ是对应的特征向量,则 A
2
ξ=aAξ,λ
2
ξ=aλξ,(λ
2
-aλ)ξ=0. 由于ξ≠0,故有λ(λ-a)=0.所以,矩阵A的特征值是0或a.又因为[*]=tr(A)=a≠0,所以λ
1
=a是A的1重特征值,λ
2
=λ
3
=…=λ
n
=0是A的n-1重特征值. 对于特征值λ
2
=λ
3
=…=λ
n
=0,齐次线性方程组(0.E-A)x=0系数矩阵的秩 r(0.E-A)=r(-A)=r(A) =r(αβ
T
)≤min{r(α),r(β
T
))=1. 又因为 [*] 故a
i
,b
i
(i=1,2,…,n)不全为零.由此可知 r(A)≥1. 所以r(0.E-A)=1.因此,矩阵A的属于n-1重特征值0的线性无关的特征向量个数为n-1.从而,A有n个线性无关的特征向量,故A相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Sg4777K
0
考研数学一
相关试题推荐
求下列幂级数的收敛域或收敛区间:(Ⅰ)xn-1;(Ⅱ)x2n;(Ⅲ)anxn的收敛半径R=3;(只求收敛区间)(Ⅳ)an(x-3)n,其中x=0时收敛,x=6时发散.
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X).试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ))Y=|(X一1)|的分布函数F(y).
曲面2x2+3y2+z2=6上点P(1,1,1)处指向外侧的法向量为n,求函数u=在点P处沿方向n的方向导数.
假设总体X的方差DX存在,X1,…Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为,S2,则EX2的矩估计量是
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf′(x)=f(x)+ax2,又由曲线y=f(x)与直线=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0.g’(x)<0,试证明存在∈∈(a,b)使
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限
(01年)设则div(gradr)|(1,-2,2)=________.
(87年)设则在x=a处
随机试题
行政诉讼的原告
A.脂肪酸B.单不饱和脂肪酸C.必需脂肪酸D.反式脂肪酸E.顺式脂肪酸构成甘油三酯的基本成分是()
该学术专著出版后,有许多人主张对该专著也享有著作权。下列说法中正确的是( )。下列关于他人使用魏教授作品的行为中,属于“合理使用”的是( )。
下列属于工程质量事故处理方案的辅助方法的有()。
安装工程一切险对考核期的保险责任一般不超过()
属于进度控制主要工作环节的是()。
由于控制继电器的动作十分频繁,因此必须做到每月至少检修()次。
法律责任是指由于某种侵权或违约行为的出现而依法应承担的义务,分为()
已知x、y满足约束条件若z=y-x,求z的最大值.
SomeAfricanAmericanshavehadaprofoundimpactonAmericansociety,changingmanypeople’sviewsonrace,historyandpoliti
最新回复
(
0
)