首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f’(a),f’(b)}≤μ≤maax|f’(a),f’(b)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f’(a),f’(b)}≤μ≤maax|f’(a),f’(b)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
admin
2020-03-15
61
问题
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f
’
(a),f
’
(b)}≤μ≤maax|f
’
(a),f
’
(b)}的常数μ,存在ξ∈[a,b]使得f
’
(ξ)=μ.
选项
答案
若f
’
(a)=f
’
(b),则取ξ=a或ξ=b即可.若f
’
(a)≠f
’
(b),为了确定起见,无妨设f
’
(a)>f
’
(b)(对f
’
(a)
’(b)的情形可类似证明).当μ=f
’
(a)或μ=f
’
(b)时相应取ξ=a或ξ=b即可.从而只需证明μ介于f
’
(a)与f
’
(b)之间的情形定理的结论也成立.引入辅助函数F(x)=f(x)一μ(x一a),则F
’
(a)=f
’
(a)一μ>0,由导数的定义即得[*],从而存在x
1
∈(a,b)使得[*],于是F(x
0
)>F(a),这表明F(a)不是F(x)在[a,b]E的最大值.此外还有F
’
(b)=f
’
(b)一μ<0,同样由导数定义得[*],从而存在x
2
∈(x
1
,b)使得[*],于是F(x
2
)>F(b),这表明F(b)也不是F(x)在[a,b]上的最大值.综上所述即知必存在ξ∈(a,b)使得F(ξ)是F(x)在[a,b]上的最大值,由F(x)的可导性必有F
’
(ξ)=0即f
’
(ξ)=μ.类似可证,在相反的情形下必存在ξ∈(a,b)使得F(ξ)是F(ξ)在[a,b]上的最小值,由F(x)的可导性也有F
’
(ξ)=0即f
’
(ξ)=μ成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/9gD4777K
0
考研数学三
相关试题推荐
设f(x,y)在D:x2+y2≤a2上连续,则f(x,y)dσ()
设I1=dσ,I2=cos(x2+y2)dσ,I3=cos(x2+y2)2dσ,其中D={(x,y)|x2+y2≤1},则()
设z=f(x,y)在点(x0,y0)处可微,Δz是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数p的0—1分布,令Xk=k=1,2,求随机变量(Xi,X2)的联合分布。
设随机变量X在1,2,3中等可能取值,随机变量y在1~X中等可能地取值。求:二维随机变量(X,Y)的联合分布律及边缘分布律;
三阶常系数线性齐次微分方程y"'一2y"+y'一2y=0的通解为y=_________。
设f(x)=|sint|dt,证明f(x)是以π为周期的周期函数;
幂级数的收敛域为___________。
[2005年]从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放人乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
随机试题
简述我国教育管理的基本原则。
设二元函数z=arctan,则=()。
由于内分泌的改变,使龈组织对微量局部刺激产生明显炎症的疾病是()
要约的定义是( )。
《城乡规划法》规定,以()提供国有土地使用权的,建设单位在报送有关部门批准或者核准前,应当向城乡规划主管部门申请核发选址意见书。
根据海关对企业的分类管理规定,适用A类管理的报关企业,海关对其实施常规管理措施。
根据参与者的介入程度和品牌间的差异程度,可将消费者的购买行为分为()。
19世纪末20世纪初垄断组织产生的原因及其在各主要资本主义国家发展变化的动向。比较德国、意大利统一运动的异同。
A、10%.B、15%.C、20%.D、25%.C
WriteonANSWERSHEETTHREEanoteofabout50—60wordsbasedonthefollowingsituation:YourfriendMaryhasboughtane
最新回复
(
0
)