首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f’(a),f’(b)}≤μ≤maax|f’(a),f’(b)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f’(a),f’(b)}≤μ≤maax|f’(a),f’(b)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
admin
2020-03-15
75
问题
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f
’
(a),f
’
(b)}≤μ≤maax|f
’
(a),f
’
(b)}的常数μ,存在ξ∈[a,b]使得f
’
(ξ)=μ.
选项
答案
若f
’
(a)=f
’
(b),则取ξ=a或ξ=b即可.若f
’
(a)≠f
’
(b),为了确定起见,无妨设f
’
(a)>f
’
(b)(对f
’
(a)
’(b)的情形可类似证明).当μ=f
’
(a)或μ=f
’
(b)时相应取ξ=a或ξ=b即可.从而只需证明μ介于f
’
(a)与f
’
(b)之间的情形定理的结论也成立.引入辅助函数F(x)=f(x)一μ(x一a),则F
’
(a)=f
’
(a)一μ>0,由导数的定义即得[*],从而存在x
1
∈(a,b)使得[*],于是F(x
0
)>F(a),这表明F(a)不是F(x)在[a,b]E的最大值.此外还有F
’
(b)=f
’
(b)一μ<0,同样由导数定义得[*],从而存在x
2
∈(x
1
,b)使得[*],于是F(x
2
)>F(b),这表明F(b)也不是F(x)在[a,b]上的最大值.综上所述即知必存在ξ∈(a,b)使得F(ξ)是F(x)在[a,b]上的最大值,由F(x)的可导性必有F
’
(ξ)=0即f
’
(ξ)=μ.类似可证,在相反的情形下必存在ξ∈(a,b)使得F(ξ)是F(ξ)在[a,b]上的最小值,由F(x)的可导性也有F
’
(ξ)=0即f
’
(ξ)=μ成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/9gD4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正反面各出现一次},A4={正面出现两次},则事件()
设A,B为两个随机事件,且BA,则下列式子正确的是()
已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:(X,Y)的联合分布;
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q-1AQ=Λ。
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
设f(x)=|sint|dt,证明f(x)是以π为周期的周期函数;
设幂级数anxn与bnxn的收敛半径分别为,则幂级数的收敛半径为()
设X服从[a,b]上的均匀分布,X1,…,Xn为简单随机样本,求a,b的最大似然估计量。
从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P{Y=2}=_______.
随机试题
便士报运动
不定积分等于()
癫痫持续状态
肺炎气阴两伤余热未尽型宜选用肺炎风热犯肺型宜选用
施工项目管理规划大纲分为施工项目管理()和施工项目管理实施规划。
根据皮亚杰的认知发展阶段理论,小学生的思维发展主要处在()阶段。
左边给定的是纸盒的外表面,右边哪一项能由它折叠而成?
(2006年考试真题)OnthenorthbankoftheOhioriversitsEvansville,Ind.,homeofDavidWilliams,52,andofariverboatcasino
要限制宏命令的操作范围,可以在创建宏时定义()。
Carsandotherroadvehiclesarethesinglemainsourceofharmfulnitrogenoxides.Roadtransportremainsthebiggestsourc
最新回复
(
0
)