首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
admin
2019-01-19
43
问题
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
选项
答案
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是 A
n
α=λ
n
α。用α右乘A
4
+2A
3
+A
2
+2A=O,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2。 由于实对称矩阵必可相似对角化,且秩r(A)=r(Λ)=2,所以A的特征值是0,一2,一2。 因A相似于Λ,则有A+E与Λ+E=[*]相似,所以r(A+E)=r(Λ+E)=3。
解析
转载请注明原文地址:https://kaotiyun.com/show/RnP4777K
0
考研数学三
相关试题推荐
设X1,…,Xn为相互独立的随机变量,Sn=X1+…+Xn,则根据列维一林德贝格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,…,Xn【】
已知向量组(Ⅰ):β1=(0,1,-1)T,β2(a,2,1)T,β3=(6,1,0)T与向量组(Ⅱ):α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T具有相同的秩,且β2可由向量组(Ⅱ)线
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设a1bi≠0(i=1,2,…,n),则矩阵A=的秩为_______.
已知某企业的总收入函数为R=26χ-2χ2-4χ3.总成本函数为C=8χ+χ2.其中χ表示产品的产量,求利润函数.边际收入函数,边际成本函数,以及企业获得最大利润时的产量和最大利润.
设某产品的总成本函数为C(χ)=400+3χ+χ2而需求函数p=,其中χ为产量(假定等于需求量),p为价格,试求:1)边际成本为_______;2)边际收益为_______;3)边际利润为_______;
设总体X的分布函数为其中参数θ(0<θ<1)未知.X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.求参数θ的矩估计量;
设幂级数在(一∞,+∞)内收敛,其和函数y(x)满足.y’’一2xy’一4y=0,且y(0)=0,y’(0)=1.证明:
检查员逐个地检查某产品,每次花10秒钟检查一个,但也可能有的产品需要再花10秒钟重复检查一次,假设每个产品需要重复检查的概率为0.5,求在8小时内检查员检查的产品个数多于1900个的概率是多少?
证明下列不等式:
随机试题
SpeakerA:It’swonderfultohearthatyourbookhasbeenpublished.SpeakerB:______
十二指肠球部溃疡一般不会有的并发症的是
影响总图运输方案设计的外部因素包括()。
投资估算是在对项目的技术方案和()等进行研究并初步确定的基础上,估算项目投入总资金,并测算建设期内分年资金需要量的过程。
个人将其所得通过中国境内非营利团体向社会公益事业捐赠,捐赠额允许从应纳税所得额中扣除,但捐赠扣除额不得超过应纳税所得额的()。
开放式询问的实施方法是()。
机械学习与有意义学习划分的主要依据是()。
2011年10月,某市F区人大进行换届选举。5月初,高校教师王某通过微博公开其参选该区人大代表的意愿,并公布了个人身份和简历等基本情况。该条微博发布后,引起了社会广泛关注。请结合上述材料,运用宪法学知识和选举法相关规定,同答以下问题:王某参选
Whilethemovieemploysstockcharacterizations,admirersarguethatitis(i)______evenifitsdepictionis(ii)______.
—Becareful!Don’tbreakthebottles.Doyouhear______Isaid,David?—Yes,Mum.
最新回复
(
0
)