首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
admin
2019-01-19
57
问题
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
选项
答案
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是 A
n
α=λ
n
α。用α右乘A
4
+2A
3
+A
2
+2A=O,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2。 由于实对称矩阵必可相似对角化,且秩r(A)=r(Λ)=2,所以A的特征值是0,一2,一2。 因A相似于Λ,则有A+E与Λ+E=[*]相似,所以r(A+E)=r(Λ+E)=3。
解析
转载请注明原文地址:https://kaotiyun.com/show/RnP4777K
0
考研数学三
相关试题推荐
计算二重积分=_______,其中D是由直线y=2,y=χ和双曲线χy=1所围成的平面区域.
二次型f(χ1,χ2,χ3)=2χ12+χ22-4χ32-4χ1χ2-2χ2χ3的标准形是【】
设向量组(Ⅰ):α1,α2,…,αr线性无关,且(Ⅰ)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得向量组βj,α2,…,αr线性无关.
设a1bi≠0(i=1,2,…,n),则矩阵A=的秩为_______.
设矩阵,B=P-1A*P,求B+2E的特征值和特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
设A,B为同阶方阵,则A与B相似的充分条件是【】
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
知A、B均是三阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第一列和第2列对换得到B1,又A1B1=,则AB=__________.
设随机变量X与Y相互独立,且均服从(一1,1)上的均匀分布.(1)试求X和Y的联合分布函数;(2)试求Z=X+Y的密度函数.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维-林德伯格中心极限定理,当n充分大时Sn近似服从正态分布,只要X1,X2,…,Xn。
随机试题
Thissummerthecity’sDepartmentofTransportationstartsanewbike-shareprogram.People【K1】________liveandworkinNewYork
Thereisanotherconversationwhichfromourpointofviewisequallyimportant,andthatistodonotwithwhatisreadbutwit
引起甲状腺弥漫肿大的病因包括
下列语句中,量和单位使用符合规范的有()。
2018年1—12月,全国房地产开发投资120264亿元,比上年增长9.5%。其中,住宅投资85192亿元,增长13.4%,比1—11月回落0.2个百分点,比上年提高4个百分点。按地区划分,2018年,东部地区房地产开发投资64355亿元,比上年增长10
接待()宾客,敬茶时应用右手提供服务。
A、睾丸鞘膜积液B、交通性鞘膜积液C、睾丸肿瘤D、腹股沟斜疝E、精索静脉曲张患者,男,22岁。发现右侧阴囊内鸡蛋大小肿块半年,无痛,平卧后无缩小。扪之有囊性感,透光试验(+)。最可能的诊断为()
患者一周前进食后右上腹痛明显,无明显发热。超声示胆囊大小为8.0cm×3.0cm,壁厚0.4cm,呈双边,囊内可见多发强光团,最大1.6cm,后伴声影,随体位改变有移动。右上腹相当于结肠肝曲位置见8.3cm×6.9cm不均匀光团,与胆囊界限不清,形态不规整
民族问题经常是与宗教问题相联系的,宗教是民族文化中很重要的组成部分。一族多教,一教多派,都可能导致民族宗教冲突。宗教社会学的“冲突派”学者认为,宗教是社会分裂的根源。他们的这些看法不免有失偏颇或夸大,但问题的严重性却是不言而喻的。根据这段文字可以推
我国土壤污染物主要是什么?()
最新回复
(
0
)