首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
admin
2019-01-19
77
问题
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
选项
答案
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是 A
n
α=λ
n
α。用α右乘A
4
+2A
3
+A
2
+2A=O,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2。 由于实对称矩阵必可相似对角化,且秩r(A)=r(Λ)=2,所以A的特征值是0,一2,一2。 因A相似于Λ,则有A+E与Λ+E=[*]相似,所以r(A+E)=r(Λ+E)=3。
解析
转载请注明原文地址:https://kaotiyun.com/show/RnP4777K
0
考研数学三
相关试题推荐
设A为n阶方阵,秩(A)=r<n,且满足A2=2A,证明:A必相似于对角矩阵.
已知二次型f(χ1,χ2,χ3)=χTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(χ1,χ2,χ3)=5χ12+5χ22+cχ32-2χ1χ2+6χ1χ3-6χ2χ3的秩为2.(1)求参数c及f所对应矩阵的特征值;(2)指出方程f(χ1,χ2,χ3)=1表示何种二次曲面.
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
已知矩阵A=(aij)n×n的秩为n-1,求A的伴随矩阵A*的特征值和特征向量。
已知某企业的总收入函数为R=26χ-2χ2-4χ3.总成本函数为C=8χ+χ2.其中χ表示产品的产量,求利润函数.边际收入函数,边际成本函数,以及企业获得最大利润时的产量和最大利润.
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵A=,求线性方程组Ax=b有解的概率.
设随机变量X与Y相互独立,且均服从(一1,1)上的均匀分布.(1)试求X和Y的联合分布函数;(2)试求Z=X+Y的密度函数.
设矩阵已知矩阵A相试于B,则秩r(A-2E)+r(A-E)=()
随机试题
动作发展最为迅速,机械记忆比较发达的时期是()。
在古罗马共和时代,控制国家最高权力的是()
身处教育实践第一线的研究者与受过专门训练的科学研究者密切协作,以教育实践中存在的某一问题作为研究对象,通过合作研究,再把研究结果应用到自身从事的教育实践中的一种研究方法,这种方法是()。
电子邮件可以发送图片,但不能发送声音。()
腺样囊性癌最常发生远处转移的脏器是A.脑B.骨C.肝D.肾E.肺
对不予医师执业注册有异议的可以
某县公安局接到有人在薛某住所嫖娼的电话举报,遂派员前往检查。警察到达举报现场,敲门未开破门入室,只见薛某一人。薛某拒绝在检查笔录上签字,警察在笔录上注明这一情况。薛某认为检查行为违法,提起行政诉讼。下列哪些选项是正确的?(2009年试卷二第88题)
我国首次实现月球软着陆和月面巡视勘察的探测器是()。
以下人物中,()是《玩偶之家》中的人物。
请打开考生文件夹下的解决方案文件ptoj3,此工程中包含一个源程序文件proj3.cpp,其功能是从文本文件in.dat中读取全部整数,将整数序列存放到intArray类的对象中,然后建立另一对象myArray,将对象内容赋值给myArray。类intAr
最新回复
(
0
)