首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).
[2003年] 设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).
admin
2021-01-19
47
问题
[2003年] 设向量组(Ⅰ):α
1
,α
2
,…,α
r
可由向量组(Ⅱ):β
1
,β
2
,…,β
s
线性表示,则( ).
选项
A、当r<s时,向量组(Ⅱ)必线性相关
B、当r>s时,向量组(Ⅱ)必线性相关
C、当r<s时,向量组(Ⅰ)必线性相关
D、当r>s时,向量组(Ⅰ)必线性相关
答案
D
解析
利用命题2.3.1.4(1)判别.
解一 由命题2.3.1.4(1)知,仅(D)入选.
解二 由于向量组线性相关的一个充要条件是其秩小于向量组所含向量的个数,上例只需根据题设条件考察哪一个选项的向量组的向量个数大于其秩即可.向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则秩(I)≤秩(Ⅱ)<s.因而当r>s时,必有秩(I)<r,即向量组(I)的秩小于其所含向量的个数,此时向量组(I)必线性相关.仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/9j84777K
0
考研数学二
相关试题推荐
设A,B分别为m×n及n×5阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设函数f(x)在x=x0的某邻域U内存在连续的二阶导数.(I)设当h>0,(x0-h)∈U,(x0﹢h)∈U,恒有f(x0)
下列函数在指定区间上不存在原函数的是
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
(1997年试题,二)如图1—3—1所示,设在闭区间[a,b]上f(x)>0,f’(x)0记则().
(1997年)已知向量组α1=(1,2,-1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=_______.
(1997年)设F(χ)=∫χχ+2χesintsintdt,则F(χ)【】
随机试题
手术产新生儿护理中错误的是( )
下列关于燃气调压器的叙述不正确的是()。
在设计准备阶段监理的工作内容中,不应包括( )。
在资金时间价值计算时,i和n给定,下列等式中正确的有()。
动感地带“我的地盘,我做主”这句广告宣传语直接命中消费角色中的()。
中国古代第一个享有盛誉的名医,是春秋战国后期的民间医生华佗。()
对下列农业知识的掌握有误的一项是()。
中国特色社会主义道路之所以完全正确、之所以能够引领中国发展进步,关键是
设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
请使用VC6或使用【答题】菜单打开考生文件夹proj3下的工程proj3,其中声明的DataList类,是一个用于表示数据表的类。DataList的重载运算符函数operator+,其功能是求当前数据表与另一个相同长度的数据表之和;即它返回一个数据表,其每
最新回复
(
0
)