首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2016-09-12
82
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0,着k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/9mt4777K
0
考研数学二
相关试题推荐
设X和Y分别表示扔n次硬币出现正面和反面的次数,则X,Y的相关系数为().
求.
求.
[*]
证明:奇次多项式p(x)=a0x2n+1+a1x2n+….+a2n+1(a0≠0)至少存在一个零点。
若f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:在(a,b)内至少存在一点ε,使得f(ε)=ε.
设在区间[a,b]上f(x)>0,f’(x)<0,f"(x)>0,令S1=∫abf(x)dx,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则________.
已知二次方程x2-2ax+10x+2a2-4a-2=0有实根,试问a为何值时,它是方程两根之积的极值点,并求极值.
如果f(x)在[-1,1]上连续,且平均值为2,则
a为何值时y=ax2与y=lnx相切?
随机试题
关于构件式玻璃幕墙立柱安装的说法,正确的是()。
简述基层治理的“枫桥经验”。
与肝细胞癌的发生无关的是
A.二甲双胍B.格列美脲C.瑞格列奈D.阿卡波糖E.利拉鲁肽即可降低空腹血糖,又可降低餐后血糖,被称为“餐时血糖调节剂”的降糖药是()。
动物和人生而具有,不学而会的反射叫()。
某教师在“燃烧和灭火”教学时,运用多媒体展示了自己开发的一些教学资源(包括视频、图片)。课后,他对这些教学资源的使用进行了反思。下列选项不属于本次反思内容的是()。
2008年江西省各设区市普通中学分布情况表2008年初中和高中在校学生均高于全省平均水平的设区市有几个?()
某单位200名青年职工中,党员的比例高于80%,低于81%,其中党龄最长的10年,最短的1年。问该单位至少有多少名青年职工是在同一年入党的?()
对(甲)文中“不必太滞”理解正确的一项是:对“读书不求甚解”理解正确全面的一项是:
A、 B、 C、 A题目为询问从哪里可以获得文件的Where疑问句。
最新回复
(
0
)