首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2016-09-12
62
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0,着k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/9mt4777K
0
考研数学二
相关试题推荐
求.
曲线y=x5-4x+2的拐点是________。
设某种商品的单价为p时,售出的商品数量Q可以表示成,其中a,b,c均为正数,且a>bc。要使销售额最大,商品单价应取何值?最大销售额是多少?
设,其中f(x)二阶可导,求F’(x)。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(x)|≤b,其中a.b都是非负常数,c是(0,1)内任意一点.证明
判断级数的敛散性,并说明是绝对收敛,条件收敛或发散。
有两个级数,根据已知条件进行作答。若两个级数:两个都发散,其和如何?
a为何值时y=ax2与y=lnx相切?
设函数f(x)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
随机试题
定量包装商品净含量的检验应依据__________进行。
女性,40岁,因患甲亢曾接受131I治疗,近2年来自觉乏力,畏寒,眼睑及下肢水肿,其水肿最可能的原因是
牛慢性蕨中毒的典型症状是
缺氧时,突出的临床表现是
尝试:成功
简述学生伤害事故的原因。
关于物理常识,下列说法正确的是:
假设某一经济最初的通货膨胀率为18%,如果衰退对通货膨胀的影响系数为:h=0.4。那么政府通过制造10%的衰退如何实现通货膨胀率不超过4%的目标?
Organicfoodisconsideredbetterthanmedicinetokeeppeoplespiritualfitness.
Whenyou’reeightmonthspregnant,it’shardtofindagoodinterviewsuit.Butafast-growingbellydidn’tstopNicoleYoung,3
最新回复
(
0
)