首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2016-09-12
58
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0,着k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/9mt4777K
0
考研数学二
相关试题推荐
求.
求下列不定积分。
曲线y=x5-4x+2的拐点是________。
当a取下列哪个值时,函数f(x)=2x3-9x2+12x-a恰有两个不同的零点________。
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫xag(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt证明:∫abxf(x)dx≤∫abxg(x)dx。
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于________。
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为________。
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=________。
设f(x)=3x2+Ax-3,问正数A至少为何值时,可使对任意的x∈(0,+∞),都有f(x)≥20.
函数y=lnx在区间[1,e]上的平均值为___________.
随机试题
某频率计测的信号频率值为0.05210MHZ,则其有效数字()
患者,45岁,近1年来月经不规则,据上次月经48天后,发生阴道大出血。妇检:宫颈中度糜烂,子宫饱满,稍软,首选的方法是
以下不属于急性酒精中毒共济失调期的表现的是
阴邪盛而导致的寒实证,其治疗方法是
撤销要约时,撤销要约的通知应当在受要约人发出承诺通知()到达受要约人。
将创建的新表保存为“货币资金表”(存放路径:C:\我的文档)。
在基本经济进货批量模式中,经济进货批量的确定与存货的买价无关。()
莫言的文学创作拥有深厚的地域和民间渊源,他以丰富的想象力,将魔幻现实主义与民间故事融会在一起,从“高密东北乡”的历史与现实中提炼出富有张力的“民间深层经验”。这表明()。
读下面教材内容,完成以下各项。我国洪涝灾害频繁发生的原因:洪涝灾害的成因较为复杂,如季节性的区域强降水、流域地貌特征、江河的洪枯流量变化大、植被分布以及人类活动等因素的相互作用,都可能引发洪涝灾害。一般来说,洪涝灾害的发生受气候因素的影响较大。我国大部分
Chaucerwasthefirstimportantpoettowritein______aftertheNormanConquest.
最新回复
(
0
)