首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型; (Ⅱ)判断f(x)在(-∞,1]是否有界,并说明理由。
设 (Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型; (Ⅱ)判断f(x)在(-∞,1]是否有界,并说明理由。
admin
2018-11-16
46
问题
设
(Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型;
(Ⅱ)判断f(x)在(-∞,1]是否有界,并说明理由。
选项
答案
先求[*]。 当0<x<1时,[*]; 当x=1时,[*]; 当x>1时,[*], 于是[*] (Ⅰ)当x≠0,x≠1时,显然f(x)连续,在x=0处,由[*][*] →f(x)在点x=0处不连续,且点x=0是f(x)的第一类间断点,在x=1附近,由[*]42 →f(x)在点x=1处既左连续又右连续,于是f(x)在点x=1处连续,因此f(x)在(-∞,0),(0,+∞)连续,x=0是f(x)的第一类间断点。 (Ⅱ)题(Ⅰ)中已证明这个分段函数在(-∞,0),(0,+∞)连续,且[*]存在,要判断f(x)在(-∞,1)上的有界性,只需再考察[*],即[*] 因f(x)在(-∞,0)连续,又[*]存在→f(x)在(-∞,0)有界,f(x)在(0,1)连续,又[*]存在→f(x)在(0,1)有界,因此f(x)在(-∞,1)有界。
解析
转载请注明原文地址:https://kaotiyun.com/show/9yW4777K
0
考研数学三
相关试题推荐
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
[*]
设二维随机变量(X,Y)的联合密度为f(x,y)=求Z=max(X,Y)的密度.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x);
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有().
设an=tannxdx。(Ⅰ)求(an+an+2)的值;(Ⅱ)证明对任意的常数λ>0,级数收敛。
(15年)设函数f(χ)在定义域I上的导数大于零.若对任意的χ0∈I,曲线y=f(χ)在点(χ0,f(χ0))处的切线与直线χ=χ0及χ轴所围成区域的面积恒为4,且f(0)=2,求f(χ)的表达式.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.(I)求正交矩阵Q;(Ⅱ)求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
随机试题
5岁女孩,因全身水肿1个月住院,血压90/60mmHg;尿蛋白(+++~++++),红细胞5~10个/HP,颗粒管型1~2个4HP。此例水肿形成的原因哪项是不正确的
膨胀机转子转速要调整到使膨胀机具有最佳效率,这样常导致另一端的压缩机设计采取折中办法降低压缩机效率。
A.寒战、高热、胸痛、铁锈色痰B.慢性咳嗽、大量脓痰、反复咯血C.劳力性呼吸困难伴咳嗽、咯血D.午后低热、盗汗、咳嗽、咳痰、痰中带血E.咳嗽、咳痰伴喘息5年,持续3个月,连续2年以上
关于上消化道出血的描述正确的是
关于头部定位线的描述,错误的是
关于红细胞比容说法错误的是
空气栓塞致死的原因是气泡阻塞()
Whenhesucceededinfinishinghisdesign,thetechnician______(似乎忘乎所以了)
A、Hecloseshisdesignstudioforawholeyear.B、HegoestoNewYorkforasight-seeingtour.C、Hewritesanewsongforafamo
Participantobservationalsoreflectsanthropology’sdualnatureasbothascientificandahumanisticdiscipline(科学).Through
最新回复
(
0
)