首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设α1,α2,…,α3均为n维向量,下列结论中不正确的是( ).
[2003年] 设α1,α2,…,α3均为n维向量,下列结论中不正确的是( ).
admin
2019-04-28
52
问题
[2003年] 设α
1
,α
2
,…,α
3
均为n维向量,下列结论中不正确的是( ).
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,…,α
s
线性无关
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s
D、α
1
,α
2
,…,α
3
线性无关的必要条件是其中任意两个向量线性无关
答案
B
解析
解一 (A)正确.事实上,若α
1
,α
2
,…,α
3
线性相关,则存在一组不全为零的数k
1
,k
2
,…,k
s
使得k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0.这定义的逆否命题就是选项(A)中的命题.可见(A)成立.
若α
1
,α
2
,…,α
s
线性相关,由其定义知,存在一组而不是任意一组不全为零的数k
1
,k
2
,…,k
s
使得k
1
α
1
+k
2
α
s
+…+k
s
α
s
=0.(B)不成立.由“向量组α
1
,α
2
,…,α
s
线性无关的充要条件是秩([α
1
,α
2
,…,α
s
])=s”知,(C)也成立.因α
1
,α
2
,…,α
n
线性无关的必要条件是其任一部分向量组线性无关.当然其中任意两个向量也线性无关,(D)也成立.仅(B)入选.
解二 可举反例证明(B)不正确:向量组α
1
=[1,0]
T
,α
2
=[4,0]
T
线性相关,但对于一组不全为零的常数k
1
=1,k
2
=0,却有k
1
α
1
+k
2
α
2
=α
1
=[1,0]
T
≠0.
转载请注明原文地址:https://kaotiyun.com/show/9zJ4777K
0
考研数学三
相关试题推荐
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设L:y=sinx(0≤x≤),由x=0,L及y=sinx围成面积S1(t);由y=sint,L及x=围成面积S2(t),其中0≤t≤.(1)t取何值时,S(t)=S1(t)+S2(t)取最小值?(2)t取何值时,S(t)=S1(t)+S2(t)取最大
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是()
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
随机试题
国家消亡的历史必然性。
求微分方程y"-4y’+4y=e-2x的通解。
A.IDLB.VLDLC.LDLD.CME.HDL向肝内转运胆固醇的脂蛋白是()
产品质量认证机构应当依照国家规定对准许使用认证标志的产品进行认证后的跟踪检查,对不符合认证标准而使用认证标志的()。
下列分子属于极性分子的是()。
某水利工程业主与承包商签订了工程承包合同,合同中含有两个子工程,估算工程量甲项为2300m3,乙项为3200m3;甲项单价为180元/m3,乙项单价为160元/m3。承包合同规定:(1)开工前业主应向承包商支付合同价20%的预付款。(2)业主自
在下列财务风险与经营风险的搭配中,不符合权益投资人期望的是()。
将电视作为主要新闻来源的公众和将网络作为主要新闻来源的公众的比例之差是:
exportsubsidy
WheretheGalapagosIslandslietoday,therewasonceanunbrokenexpanseofPacific.Thentheseabegantoseetheandsimmer,t
最新回复
(
0
)