首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,且E+A可逆,证明: (1) E一A和(E+A)一1 相乘可交换; (2)若A为反对称矩阵,则(E一A) (E一A)一1是正交矩阵.
设A是n阶方阵,且E+A可逆,证明: (1) E一A和(E+A)一1 相乘可交换; (2)若A为反对称矩阵,则(E一A) (E一A)一1是正交矩阵.
admin
2020-05-16
69
问题
设A是n阶方阵,且E+A可逆,证明:
(1) E一A和(E+A)
一1
相乘可交换;
(2)若A为反对称矩阵,则(E一A) (E一A)
一1
是正交矩阵.
选项
答案
(1)因(E一A) (E+A)=E一A
2
=(E+A) (E一A), 两边分别左乘、右乘(E+A)
一1
得到 (E+A)
一1
(E—A)(E+A)(E+A)
一1
=(E+A)
一1
(E+A)(E—A)(E+A)
一1
, 故 (E+A)
一1
(E一A)=(E一A) (E+A)
一1
, 即E一A与(E+A)
一1
相乘可交换. (2)为证(E一A) (E+A)
一1
为正交矩阵,只需证. [(E—A) (E+A)
一1
]
T
=[(E—A)(E+A)
一1
]
一1
. 事实上,由(1)的结果得到 [(E—A) (E+A)
一1
]
T
=[(E+A)
一1
(E一A)]
T
=(E一A)
T
[(E+A)
一1
]
T
=(E—A
T
)[(E+A)
T
]
一1
=(E—A
T
)(E+A
T
)
一1
=(E+A)(E一A)
一1
(A为反对称矩阵,A
T
=一A), 而 [(E一A) (E+A)
一1
]
一1
=[(E+A)
一1
]
一1
(E一A)
一1
=(E+A)(E一A)
一1
, 故 [(E一A)(E+A)
一1
]
T
=[(E一A)(E+A)
一1
]
一1
, 所以(E一A) (E+A)
一1
为正交矩阵.
解析
(1)利用(E—A)(E+A)=(E+A)(E—A)及矩阵乘法运算证之;
(2)利用正交矩阵的定义(AA
T
=E,即A
一1
=A
T
)证之,
转载请注明原文地址:https://kaotiyun.com/show/A1x4777K
0
考研数学三
相关试题推荐
设f(x)=,则f(x)的极值为______,f(x)的拐点坐标为__________。
曲线的斜渐近线方程为_____.
设求曲线y=f(x)与x轴所围图形面积.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P—1AP=________。
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设z=f[xg(y),x—y],其中f二阶连续可偏导,g二阶可导,求
在过点P(2,1,1/2)的所有平面中,哪一个平面与三个坐标面在第一卦限内围成的四面体体积最小?
[2002年]求极限
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
随机试题
乙胺丁醇的不良反应吡嗪酰胺的不良反应
检查体温计准确性的正确方法是将体温计的水银柱甩至35℃以下,同一时间放入39℃的水中
房地产估价机构依法从事房地产估价活动不受行政区域、行业限制。()
基金份额持有人享有的权利不包括()。
量化评估对组织人力资源管理活动的重要意义不包括()。
工作岗位设计方法研究具体应用的技术包括哪些分析工具?
当人从黑暗走入亮处后,视网膜的光感受阈限会迅速提高,这个过程是()。
根据以下资料,回答下列问题。与2007年相比,2010年咨询出口额占我国服务贸易出口的比重:
设z=z(x,y)具有二阶连续偏导数,试确定常数a与b,使得经变换μ=x+ay,v=x+by,可将z关于x,y的方程。化为z关于u,v的方程,并求出其解z=z(x+ay,x+by).
Herearethethreemostcommonmistakeslanguagelearnersmake—andhowtocorrectthem.RigidthinkingLinguistshavefound
最新回复
(
0
)