首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,且E+A可逆,证明: (1) E一A和(E+A)一1 相乘可交换; (2)若A为反对称矩阵,则(E一A) (E一A)一1是正交矩阵.
设A是n阶方阵,且E+A可逆,证明: (1) E一A和(E+A)一1 相乘可交换; (2)若A为反对称矩阵,则(E一A) (E一A)一1是正交矩阵.
admin
2020-05-16
34
问题
设A是n阶方阵,且E+A可逆,证明:
(1) E一A和(E+A)
一1
相乘可交换;
(2)若A为反对称矩阵,则(E一A) (E一A)
一1
是正交矩阵.
选项
答案
(1)因(E一A) (E+A)=E一A
2
=(E+A) (E一A), 两边分别左乘、右乘(E+A)
一1
得到 (E+A)
一1
(E—A)(E+A)(E+A)
一1
=(E+A)
一1
(E+A)(E—A)(E+A)
一1
, 故 (E+A)
一1
(E一A)=(E一A) (E+A)
一1
, 即E一A与(E+A)
一1
相乘可交换. (2)为证(E一A) (E+A)
一1
为正交矩阵,只需证. [(E—A) (E+A)
一1
]
T
=[(E—A)(E+A)
一1
]
一1
. 事实上,由(1)的结果得到 [(E—A) (E+A)
一1
]
T
=[(E+A)
一1
(E一A)]
T
=(E一A)
T
[(E+A)
一1
]
T
=(E—A
T
)[(E+A)
T
]
一1
=(E—A
T
)(E+A
T
)
一1
=(E+A)(E一A)
一1
(A为反对称矩阵,A
T
=一A), 而 [(E一A) (E+A)
一1
]
一1
=[(E+A)
一1
]
一1
(E一A)
一1
=(E+A)(E一A)
一1
, 故 [(E一A)(E+A)
一1
]
T
=[(E一A)(E+A)
一1
]
一1
, 所以(E一A) (E+A)
一1
为正交矩阵.
解析
(1)利用(E—A)(E+A)=(E+A)(E—A)及矩阵乘法运算证之;
(2)利用正交矩阵的定义(AA
T
=E,即A
一1
=A
T
)证之,
转载请注明原文地址:https://kaotiyun.com/show/A1x4777K
0
考研数学三
相关试题推荐
设X,Y为两个随机变量,E(X)=E(Y)=1,D(X)=9,D(Y)=1,且则E(X一2Y+3)2=_________.
二重积分ln(x2+y2)dxdy的符号为________.
设(X,Y)~N(μ,μ;σ2,σ2;0),则P{X<Y}=______.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使fˊ(ξ)=0.
设f(x)在[0,+∞)上连续,且收敛,其中常数A>0.证明:
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
ln3因是奇函数,故=0.所以原积分==ln(2+x2)|02=ln6-ln2=ln3.
设事件A,B,C两两独立,满足ABC=,P(A)=P(B)=P(C),且则P(A)=____________.
交换积分次序:=________.
函数,则极限()
随机试题
根据中共中央办公厅、国务院办公厅印发的《关于全面加强和改进新时代学校美育工作的意见》,下列说法错误的是()。
诊断接触性睑皮炎的要点包括
国内有将马来酸赛马洛尔以下列哪种卡波沫为辅料制成眼用凝胶治疗青光眼
人格是指
妊娠12周以内,胚胎自然殒堕者称
病人李某,70岁,由于输液速度过快引起急性肺水肿,病人宜采取的体位是
船舶常用的定位方法有()。
清算组应当自成立之日起()日内通知债权人,并于()日内在报纸上公告。
禁止商业贿赂是《银行业从业人员职业操守》中()基本准则的要求。
TheSoundandtheFuryiswrittenby
最新回复
(
0
)