首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使得f(2)-f(0)=2f′(ξ)成立的ξ.
设f(x)=验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使得f(2)-f(0)=2f′(ξ)成立的ξ.
admin
2019-09-27
31
问题
设f(x)=
验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使得f(2)-f(0)=2f′(ξ)成立的ξ.
选项
答案
由f(1-0)=f(1)=f(1+0)=1得f(x)在x=1处连续,从而f(x)在[0,2]上连续. 由f′
-
(1)=[*]=-1, f′
+
(1)=[*]=-1. 得f(x)在x=1处可导且f′(1)=-1,从而f(x)在(0,2)内可导, 故f(x)在[0,2]上满足拉格朗日中值定理的条件. f(2)-f(0)=[*]=-1, 当x∈(0,1)时,f′(x)=-x; 当x>1时,f′(x)=[*], 即f′(x)=[*] 当0<ξ≤1时,由f(2)-f(0)=2f′(ξ)得-1=-2ξ,解得ξ=[*]; 当1<ξ<2时,由f(2)-f(0)=2f′(ξ)得-1=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/A6S4777K
0
考研数学一
相关试题推荐
设α1,α2,α3是3维向量空间R3的一组基,则由基α1,到基α1+α2,α2+α3,α3+α1的过渡矩阵为
设总体X的概率密度函数为f(x),而X1,X2,…,Xn是来自总体X的简单随机样本,X(1),X(1/2)和X(n)相应为X1,X2,…,Xn的最小观测值、中位数和最大观测值,则().
函数f(x)在x=1处可导的充分必要条件是().
设总体的概率密度为f(x;θ)﹦其中θ(θ>0)是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,求θ的矩估计量和最大似然估计量。
计算曲面积分I﹦(2x3﹢az)dydz﹢(2y3﹢ax)dzdx﹢(2zz3﹢ay)dxdy,其中曲面∑为上半球面x﹦的外侧。
交换积分次序∫0-1dy∫1-y2f(x,y)dx﹦______。
设随机变量(X,Y)服从二维正态分布,其边缘分布分别为X~N(2,4),Y~N(3,6),X与Y的相关系数为pXY﹦,且概率P{aX﹢bY≤1}﹦,则()
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
求极限
随机试题
按照防火墙保护网络使用方法的不同,防火墙可分为应用层防火墙和_________。
Tobeginwith,itisimpossibletocomeupwithasatisfactorydefinitionofwhatconstituteshappyandunhappymarriage.
承揽人在独立完成工作中遭受意外风险而不能完成工作的,如此意外风险不属不可抗力,风险由谁承担?()
目前,在我国接待团队旅游是大部分旅行社的主要业务。()
关于汉字的说法,正确的有()。
SCL一90共有90个项目,每个项目采用的均是()级评分制。
下面两题基于以下题干学年末,某中学初一年级进行了学年评定,有些学生干部当上了区三好学生,有些学生人了团。在推选共青团员的活动中,所有校三好学生都递交了入团申请,所有区三好学生都没有写入团申请。
关于我国区域经济发展格局,说法不正确的是()。
2011年,我国商标局共受理商标注册申请1416785件,连续十年位居世界第一。其中商标注册网上申请达804926件,占同期商标注册申请总量的56.8%。国内申请1273827件,外国来华申请量(包括马德里商标国际注册领土延伸申请的47127件)14295
SomehowCaliforniaisalwaysatthecuttingedge,beitintheflower-powerdaysofthe1960sorthedotcomboomofthe1990s.A
最新回复
(
0
)