首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2016-04-11
61
问题
设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
A的特征多项式为 [*] (1)若λ=2是f(λ)的二重根,则有(λ
2
一8λ+18+3a)|
λ=2
=2
2
一16+18=3a一3a+6=0,解得a=一2. 当a=一2时,A的特征值为2,2,6,矩阵2E—A=[*]的秩为1,故对应于二重特征值2的线性无关特征向量有两个,从而A可相似对角化. (2)若λ=2不是f(λ)的二重根,则λ
2
一8λ+18+3a为完全平方,从而18+3a=16,解得a=一[*]. 当a=一[*]时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故A的对应于特征值4的线性无关特征向量只有一个,从而A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/AAw4777K
0
考研数学一
相关试题推荐
设f’(x)在[0,1]上连续,且f(1)-f(0)=1,证明:∫01f’2(x)dx≥1.
,求f(x)的间断点并对其分类。
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围。
设y=y(x)由x=∫π/2tet-usinu/3du,y=∫π/2tet-ucos2udu确定,则曲线y=y(x)在t=π/2对应点处的切线方程为________。
设,3阶矩阵B的秩为2,且r(AB)=1,则齐次方程组A*x=0的线性无关解的个数为()
微分方程y"+y=x+cosx的特解形式为()
求r=4(1+cosθ)与θ=0,θ=π/2围成的图形绕极轴旋转一周所得旋转体的体积。
设向量β=(b,1,1)T可由α1=(a,0,1)T,α2=(1,a-1,1)T,α3=(1,0,a)T线性表示,且表示方法不唯一,记A=(α1,α2,α3)。求a,b的值,并写出β由α1,α2,α3表示的线性表达式
微分方程(3y—2x)dy=ydx的通解是________.
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;(Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
随机试题
下列除哪项外均是滑石的主治病证()
地震现场,一工人左腰及下肢被倒塌之砖墙压住,震后6小时救出,4小时送抵医院。诉口渴,尿少,呈暗红色。检查:脉搏120次/min,血压95/70mmHg,左下肢明显肿胀,皮肤有散在淤血斑及水疱,足背动脉搏动较健侧弱,趾端凉,无骨折征
耕地占用税以县级行政区域为单位,人均耕地不超过1亩的地区,每平方米征收()元。
2003年1月,甲、乙、丙共同设立一合伙企业。合伙协议约定:甲以现金人民币5万元出资,乙以房屋作价人民币8万元出资,丙以劳务作价人民币4万元出资;各合伙人按相同比例分配盈利、分担亏损。合伙企业成立后,为扩大经营,于2003年6月向银行贷款人民币5万元,期限
劳务派遣单位的出现是()的必然结果。
俄国画家康定斯基的著作《论艺术中的精神》和《点线面》,奠定了__________的理论基础。另一俄国画家__________创建的至上主义,属于几何抽:象的范畴。奠定了几何抽象主义理论基础和在艺术实践上有重要贡献的是荷兰画家__________创建的”__
结合吉林省实际谈如何解放思想。
运用问答法确定学生是否理解所学知识时,教师要求学生回答问题应()。
在批评心理学中,人们把批评的内容夹在两个表扬之中从而使受批评者愉快地接受批评的现象,称之为三明治效应。根据以上定义,下列做法运用了三明治效应的是()。
在Windows命令行窗口中,运行(65)命令后得到如下图所示的结果,该命令通常用以(66)。
最新回复
(
0
)