首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2020-09-25
57
问题
设α
i
=(a
i1
,a
i2
,…,a
in
)
T
(i=1,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关.已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设有关系式k
1
α
1
+k
2
α
2
+…+k
r
α
r
+lβ=0,由于β为线性方程组的非零解,所以有 [*] 即β≠0,β
T
α
1
=0,…,β
T
α
r
=0.由关系式k
1
α
1
+k
2
α
2
+…+k
r
α
r
+lβ=0可得: k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
+lβ
T
β=0,所以lβ
T
β=0.而β≠0,所以β
T
β>0,从而可得l=0,因此有k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0,而α
1
,α
2
,…,α
r
线性无关,从而有k
1
=k
2
=…=k
r
=0,即向量组α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/AJx4777K
0
考研数学三
相关试题推荐
曲线y=∫0xtantdt的弧长S=________.
设f(x)在x=a处存在二阶导数,则
=_____________。
设f(u,v)是二元可微函数
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
(11年)设函数f(χ)在区间[0,1]上具有连续导数,f(0)=1,且满足f′(χ+y)dχdy=f(t)dχdy,其中Dt={(χ,y)|0≤y≤t-χ,0≤χ≤t)(0<t≤1).求f(χ)表达式.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求两条抛物线所围成的平面图形的面积Sn;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
[2014年]下列曲线有渐近线的是().
随机试题
下列职权不由全国人大常委会行使的是()
A.严格隔离B.消化道隔离C.保护性隔离D.呼吸道隔离E.血液-体液隔离脊髓灰质炎患者应采取
田老太太,诊断为心力衰竭,长期服用洋地黄。一日,护士诊脉时发现患者脉搏有异常改变,她最可能出现
患者,男,24岁。近3年来反复餐后3~4小时上腹痛,持续至下次进餐后才缓解。应首先考虑的是
在一起公诉案件的开庭审理时,被告人申请出庭的某公诉人回避,此时,有权对该公诉人是否应予回避作出决定的是()。
回顾历史,我们两国经济和文化的交流已经______了一千多年。
根据《中华人民共和国银行业监督管理法》的规定,国务院银行业监督管理机构对银行业金融机构的董事和高级管理人员实行()。
日前,某市推出了读书节活动,相比往届,本次读书节对传统项目予以保留,同时特别融入了“家风”专题等。并在地铁中开出一列书香专列,列车上印有名人语录、名文摘录,爱好者可以在此列车上吟诗作对。有专家推测,此次读书节有助于增加本市图书的销售量。以下哪项如果为真,不
在我国,国务院与地方各级国家行政机关之间的关系()。(2010单17)
Onmylastvisit,aboutthreemonthsago,mydoctorhadtoldmethatasa6-foot-tall,39-year-oldman,Ishouldweigharound18
最新回复
(
0
)