首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组及齐次线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
已知齐次线性方程组及齐次线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
admin
2021-07-27
40
问题
已知齐次线性方程组
及齐次线性方程组(Ⅱ)的基础解系ξ
1
=[-3,7,2,0]
T
,ξ
2
=[-1,-2,0,1]
T
.求方程组(Ⅰ)和(Ⅱ)的公共解.
选项
答案
方程组(Ⅱ)的通解为k
1
ξ
1
+k
2
ξ
2
=k
1
[-3,7,2,0]
T
+k
2
[-1,-2,0,1]
T
=[-3k
1
k
2
,7k
1
-2k
2
,2k
1
,k
2
]
T
,其中k
1
,k
2
是任意常数。将该通解代入方程组(Ⅰ)得3(-3k
1
-k
2
)-(7k
1
-2k
2
)+8·2k
1
+k
2
=-16k
1
+16k
1
-3k
2
+3k
2
=0,(-3k
1
-k
2
)+3(7k
1
-2k
2
)-9·2k
1
+7k
2
=-21k
1
+21k
1
-7k
2
+7k
2
=0,即方程组(Ⅱ)的解均满足方程组(Ⅰ),故(Ⅱ)的通解k
1
[-3,7,2,0]
T
+k
2
[-1,-2,0,1]
T
(k
1
,k
2
是任意常数)即为方程组(Ⅰ),(Ⅱ)的公共解.
解析
转载请注明原文地址:https://kaotiyun.com/show/ATy4777K
0
考研数学二
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
若向量组α,β,γ线性无关,α,β,δ线性相关,则()
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,a,b)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
设A=(aij)为3阶非零实矩阵,且已知Aij=aij(其中Aij为aij的代数余子式),i,j=1,2,3.证明:A可逆,并求|A|与A-1.
设有齐次线性方程组Ax=0和Bx=0,其中A、B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
当x→∞时,若,则a,b,c的值一定是[].
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+o(χ3).
随机试题
(2012年10月,2008年10月)1926年3月,蒋介石制造的旨在打击共产党和工农革命力量的事件是________、________。
在进行企业周期分析时,下列表述正确的是()。
进行血清离子钙测定时,采用的抗凝剂应选择()
王某因抢劫被一审法院判处四年有期徒刑后提出上诉。王某父亲从报上看到张律师专打刑事诉讼官司的广告后,找到张律师。张律师称其有多年办理刑事上诉案件的经验,胜诉率在90%以上,而且二审法院的承办法官是他的同学,有把握争取改判。经张律师提议,王父同意聘请张律师为王
甲、乙、丙三人共同出资成立某普通合伙企业,合伙协议约定甲担任合伙事务执行人,但并未约定其执行事务的权限。根据合伙企业法律制度的规定,下列事项中,甲无权单独决定的有()。(2020年)
注册会计师在定义抽样单元时,下列表述中恰当的有()。
华仔驾驶着一辆小轿车,路上突遇几个犯罪分子,将华仔身上的钱财全部抢光,然后一脚将华仔从车里踹出,驾驶着华仔的车飞奔而去。华仔赶快报警,后在追捕的过程中,由于犯罪分子想要摆脱追捕,车速非常快,在一个十字路口发生了交通事故,对他人造成了极大的损失。发生交通事故
下列物权的标的物仅限于动产的是()。
人才尤其是杰出人才之所以难得,不是因为没有,而是因为凡眼不识、世俗不容。创造性人才的一个突出特点,就是不简单认同既成的事实,不拘泥于同定的想法,具有求异思维和批判精神。他们敢于打破常规,挑战权威,不按常理行事,不按规矩出牌,“扰乱”了现有的秩序,因而不易得
Whenwethinkofgreenbuildings,wetendtothinkofnewones—thekindofhigh-tech,solar-paneled(装有太阳能板的)masterpiecesthat【
最新回复
(
0
)