首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3 ,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).
[2004年] 设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3 ,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).
admin
2019-05-10
53
问题
[2004年] 设n阶矩阵A的伴随矩阵A
*
≠O,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).
选项
A、不存在
B、仅含一个非零解向量
C、含有两个线性无关的解向量
D、含有三个线性无关的解向量
答案
B
解析
基础解系所含解向量个数等于n=秩(A),因此先求秩(A),进而确定选项.
解一 当A
*
≠O时,秩(A
*
)=0,因而秩(A
*
)=n或秩(A
*
)=1,于是秩(A)=n或秩(A)=n一1.由题设知AX=b有四个互不相等的解,因而解不唯一,于是秩(A)=n一1.因而n一秩(A)=n一(n-1)=1,即其基础解系仅含一个解向量.仅(B)入选.
解二 因A
*
≠O,故秩(A
*
)≥1,则秩(A)≥n-1.又因AX=0有解且不唯一,故秩(A)≤n一1,因而秩(A)=n一1,其基础解系仅含一个解向量.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/AVV4777K
0
考研数学二
相关试题推荐
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
当χ→0时,下列无穷小中,哪个是比其他三个更高阶的无穷小().
二次型f(x1,z2,z3)一z;+ax;+z;一4x1z2—8x1z3—4x2.273经过正交变换化为标准形5y12+by22+4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
求函数f(χ)==(2-t)e-tdt的最大值与最小值.
计χy(χ+y)dσ,其中D是由χ2-y2=1及y=0,y=1围成的平面区域.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
一个容器的内表面侧面由曲线x=(0≤x≤2,y>0)绕x轴旋转而成,外表面由曲线x=在点(2,)的切线位于点(2,)与x轴交点之间的部分绕x轴旋转而成,此容器材质的密度为μ,求此容器自身的质量M及其内表面的面积S.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
随机试题
Theclassroomisquiteclean_____somewastepaperonthefloor.
会导致病理性高血糖的情况是
患者,男,16岁。发热4天伴纳差2天急诊。检查:血压114/70mmHg,左脚趾甲沟部红肿破溃。血白细胞计数为20×109/L,中性粒细胞为89%。左脚趾经切开引流处理后应给予
吸收给药总量的50%.~75%.不经过肝门静脉药物的pKa大于10
来自于期货市场之外,对期货市场的相关主体可能产生影响的风险是( )。
按照詹姆斯.拜伦和大卫.克雷普斯的分类,处理日常信件的办公室文员的工作属于()。
甲公司向乙宾馆发出一封电报称:现有一批电器,其中电视机80台,每台售价3400元;电冰箱100台,每台售价2800元,总销售优惠价52万元。如有意购买,请告知。乙宾馆接到该电报后,遂向甲公司回复称:只欲购买甲公司50台电视机,每台电视机付款3200元;60
广告:指为了商业目的,由商品经营者或服务提供者承担费用,通过一定媒介或一定形式,如通过报刊、电视、路牌、橱窗等,直接或间接地对自己推销的商品或所提供的服务所进行的公开的宣传活动。下列属于广告活动的是()。
接收者操作特性曲线(ROC)的横轴是()
Thinkgolfis【C1】______game?Thinkagain.ResearchersincludingDebbieCrewsofArizonaStateUniversityandJohnMiltonofthe
最新回复
(
0
)