首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知一条抛物线通过x轴上两点A(1,0),8(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
已知一条抛物线通过x轴上两点A(1,0),8(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
admin
2018-06-27
91
问题
已知一条抛物线通过x轴上两点A(1,0),8(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
选项
答案
1)写出抛物线方程y=a(x-1)(x-3)(a>0或a<0为常数),如图3.27所示. [*] 2)求两坐标轴与抛物线所围面积S
1
,即 S
1
=∫
0
1
|a(x-1)(x-3)|dx=|a|∫
0
1
(1-x)(3-x)dx =[*]|a|∫
0
1
(3-x)d(1-x)
2
=[*]|a|(-3)-[*]|a|∫
0
1
(1-x)
2
dx [*] 3)求x轴与该抛物线所围面积S
2
,即 S
2
=∫∫
1
3
|a(x-1)(x-3)|dx=|a|∫
1
3
(x-1)(3-x)dx =|a|∫
1
3
[*](3-x)d(x-1)
2
=[*]|a|∫
1
3
(x-1)
2
dx [*] 4)因此,S
1
=S
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/AYk4777K
0
考研数学二
相关试题推荐
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(I):1,α2,…,αm-1线性表示,记向量组(Ⅱ):1,α2,…,αm-1,β,则
设n阶矩阵,则|A|_______。
求不定积分
已知三元二次型xTAx=x12+ax22+x32+2x1x2+2ax1x3+2x2x3的秩为2,则其规范形为__________.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.写出与A相似的矩阵B;
设在点x=0处二阶导数存在,则其中的常数a,b,c分别是
设,则α1,α2,α3经过施密特正交规范化后的向量组为_______
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费z,(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x2+32x2—8x1x2一2x12一10x22.(1)在广告
设f(x)连续并满足f(t)=cos2t+∫0tsinsds,求f(t)。
随机试题
电压型变频器与电流型变频器的主电路大体上可分为两类,各有什么不同?
A.NK细胞B.B细胞C.CD8+T细胞D.CD4+T细胞E.树突细胞能直接杀伤肿瘤细胞的是
A.饭前服用B.上午7~8时一次服用C.睡前服用D.饭后服用E.清晨起床后服用根据时辰药理学,糖皮质激素的适宜服药时间是()。
按照《劳动合同法》的规定,下列关于劳务派遣的表述中,正确的是()。
下列属于注册会计师及其所在的会计师事务所的业务范围有()。
下列属于体能主导类的项目是()。
引起黄土高原水土流失的最主要因素是()。
当x→0时,(-1)ln(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比(1-)∫0xdt高阶的无穷小,则k的取值范围是()。
OptimationLtd.,apolymerpackagingandconvertingspecialist,isonesmallcompanythatissuffering.Itshighlyspecialisede
WhatisitthatmadeSteveJobsspecial?Whatcanwelearnfromthisonce-in-a-lifetimeentrepreneur?SteveJobswasavisi
最新回复
(
0
)