首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x),y2(x),y3(x)是一阶微分方程y’=P(x)y+Q(y)的三个相异的特解,证明:为一定值。
设y1(x),y2(x),y3(x)是一阶微分方程y’=P(x)y+Q(y)的三个相异的特解,证明:为一定值。
admin
2022-10-13
59
问题
设y
1
(x),y
2
(x),y
3
(x)是一阶微分方程y’=P(x)y+Q(y)的三个相异的特解,证明:
为一定值。
选项
答案
一阶微分方程y’=P(x)y+Q(x)的通解为 y(x)=Cf(x)+ψ(x) 已知y
1
(x),y
2
(x),y
3
(x)是一阶微分方程的三个相异的特解,故 y
1
(x)=C
1
f(x)+ψ(x),y
2
(x)=C
2
f(x)+ψ(x),y
3
(x)=C
3
f(x)+ψ(x) 因此 y
3
(x)-y
1
(x)=(C
3
-C
1
)f(x) y
2
(x)-y
1
(x)=(C
2
-C
1
)f(x) 上面两式相除 [*]为一定值。
解析
取C=C
i
(i=1,2,3)可得三个相异的特解为
y
i
(x)=C
1
f(x)+ψ(x),i=1,2,3
即可得证。
转载请注明原文地址:https://kaotiyun.com/show/AbC4777K
0
考研数学三
相关试题推荐
[*]
[0,2]
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:(1)y(x)<y0-arctanx0;(2)均存在.
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[一a,a],使得
设0<k<1,f(x)=kx-arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
设连续函数f(x)满足,则f(x)=_____________________。
积分∫0πe-2xsinxdx=________.
设α=lnx/arctanx,β=ln(1+x)/(1-x),当x→0时,则().
设f(x)=∫0xecostdt,求∫0πf(x)cosxdx.
求∫arcsin2xdx
随机试题
既是学术中心课程最基本的特征,也是课程现代化最基本特征的是()
慢性肾功能不全,血钾高于6.5mmol/L时,最佳的治疗措施是
某将自己居住的房屋向某保险公司投保家庭财产保险。保险合同有效期内,该房屋因邻居家的小孩玩火而被部分毁损,损失10万元。下列哪些选项是错误的?()
以下指标的计算不需要使用现金流量表的是()。
植物景观的旅游功能包括()。
Itwasalmost9:00p.m.whenMaryleftherofficetogohome,itwas【B1】.Shestartedhercaranddrovebacktoherhomeint
蚂蚁对于()相当于()对于庄严雄伟
不是影响知识理解的因素是()
IfirstmetMarythreeyearsagowhenwe______inamiddleschooltogether.
Itwasnotsolongagothatparentsdroveateenagertocollegecampus,saidatearfulgoodbyeandreturnedhometowaitaweek
最新回复
(
0
)