首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表出式的系数全不为零,证明:α1,α2,…,αs,β中任意s个向量线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表出式的系数全不为零,证明:α1,α2,…,αs,β中任意s个向量线性无关.
admin
2019-06-28
63
问题
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表出式的系数全不为零,证明:α
1
,α
2
,…,α
s
,β中任意s个向量线性无关.
选项
答案
用反证法.设α
1
,α
2
,…,α
s
,β中存在s个向量α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
,β线性相关,则存在不全为零的常数k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,k使得 k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
+kβ=0. ① 另一方面,由题设 β=ι
1
α
1
+ι
2
α
2
+…+ι
i
α
i
+…+ι
s
α
s
, 其中ι
i
≠0,i=1,2,…,s.代入①式,得 (k
1
+kι
1
)α
1
+(k
2
+kι
2
)α
2
+…+(k
i-1
+kι
i-1
)α
i-1
+kι
i
α
i
+(k
i+1
+kι
i+1
)α
i+1
+…+(k
s
+kι
s
)α
s
=0, 因已知α
1
,α
2
,…,α
s
线性无关,从而有kι
i
=0,ι
i
≠0,故k=0,从而由①式得k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
均为0,矛盾. 故α
1
,α
2
,…,α
s
,β中任意s个向量线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/AdV4777K
0
考研数学二
相关试题推荐
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
设α1,α2,…,αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2,…,αn可由β1,β2,…,βn线性表示的充要条件是β1,β2,…,βn线性无关。
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3,线性表示,向量β2不能由α1,α2,α3线性表示,则必有()
函数F(x)=∫1x(1一ln)dt(x>0)的递减区间为___________.
曲线在(0,0)处的切线方程为__________。
设z=f(t,et)dt,其中f是二元连续函数,则dz=________.
设。对(Ⅰ)中的任意向量ξ2,ξ3,证明:ξ1,ξ2,ξ3线性无关。
-1/6方法一:本题为0/0未定型极限的求解,利用洛必达法则即可。方法二:泰勒公式。
随机试题
离婚对当事人产生的法律后果有()
通货膨胀可能会扭曲公司的成本结构,因此财务人员必须预测未来通货膨胀的程度。()
下述肾肿瘤中哪几种应进行根治性肾切除术(即切除肾周围筋膜和脂肪)
骨筋膜间室综合征,最主要的治疗措施是
下列有关缓释作用的说法错误的是
政府采购活动中的采购主体包括()。
[2000年第126题]供残疾人使用的出入口内外及电梯厅等处常考虑一辆轮椅的最小回转面积,该面积的尺寸应是:
银行业金融机构()承担全面风险管理的最终责任。
下列铁路干线中,穿越胡焕庸线的是()。
A、10.B、4.C、1.D、50B
最新回复
(
0
)