首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 方程组Ax=B必有无穷多解.
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 方程组Ax=B必有无穷多解.
admin
2017-06-14
51
问题
若n阶矩阵A=[α
1
,α
2
,…,α
n-1
,α
n
]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α
1
+α
2
+…+α
n
.证明:
方程组Ax=B必有无穷多解.
选项
答案
因为α
1
,α
2
,…,α
n
线性无关,所以α
1
,α
2
,…,α
n-1
线性无关,而α
1
,α
2
,…,α
n-1
线性相关,因此α
1
可由α
2
,…,α
n-1
线性表出,r(A)=n-1. 又β=α
1
+α
2
+…+α
n
可由α
1
,α
2
,…,α
n
线性表出,增广矩阵[*]因此方程组Ax=B必有无穷多解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Adu4777K
0
考研数学一
相关试题推荐
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
[*]
[*]
设λ=2是非奇异矩阵A的一个特征值,则矩阵(1/3A2)-1有一个特征值等于
[*]虑用高斯公式计算,但S不是封闭的,所以要添加辅助面.设所添加铺助面为S1:z=0(x2+y2≤4),法向量朝下,S与S1围成区域Ω,S与S1的法向量指向Ω的外部,在Q上用高斯公式得[*]用先二后一的求积顺序求三重积分:[*]其中Dx
已知齐次线性方程组其中,试讨论a1,a2,…,an和b满足何种关系时,(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设四维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其余向
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
设f’(1)=a,则数列极限=___________.
当x→0时,下列四个无穷小量中,哪一个是比其他三个更高阶的无穷小量?().
随机试题
人民法院、人民检察院和公安机关对于符合逮捕条件,有下列哪些情形的犯罪嫌疑人、被告人。可以监视居住?()
张老师在使用word编制试卷时,需要将试卷中所有的“不正确”三个字都加上着重号。若要批量完成这个任务,可使用Word软件中的()。
__________是TCP/IP簇网络层的核心,是Internet能够有效运行的基础。
女性,56岁。慢性肝炎病史20年患者。双上肢皮肤可见小动脉末端分支性扩张形成的血管痣,大小约2cm。应诊断为
下列属于钢筋连接方法的是()。
下列关于小导管注浆支护设计的要求中,正确的有()。
下列各项不属于物流基本功能的是()。
设f(x)在(一∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
关于无线微波扩频技术,以下______是错误的。
Manyphrasesusedtodescribemonetarypolicy,suchas"steeringtheeconomytoasoftlanding"or"atouchonthebrakes",mak
最新回复
(
0
)