首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 方程组Ax=B必有无穷多解.
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 方程组Ax=B必有无穷多解.
admin
2017-06-14
56
问题
若n阶矩阵A=[α
1
,α
2
,…,α
n-1
,α
n
]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α
1
+α
2
+…+α
n
.证明:
方程组Ax=B必有无穷多解.
选项
答案
因为α
1
,α
2
,…,α
n
线性无关,所以α
1
,α
2
,…,α
n-1
线性无关,而α
1
,α
2
,…,α
n-1
线性相关,因此α
1
可由α
2
,…,α
n-1
线性表出,r(A)=n-1. 又β=α
1
+α
2
+…+α
n
可由α
1
,α
2
,…,α
n
线性表出,增广矩阵[*]因此方程组Ax=B必有无穷多解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Adu4777K
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
[*]
设函数问函数f(x)在x=1处是否连续?若不连续,修改函数在x=1处的定义使之连续.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
(1999年试题,八)设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,p(x,y,z)为点0(0,0,0)到平面π的距离,求
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
当x→0时,下列无穷小量中阶数最高的是
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt.(Ⅰ)证明:F’(x)单调增加.(Ⅱ)当x取何值时,F(x)取最小值?(Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
随机试题
男性,34岁。腰痛1年余.近半年膝踝关节疼痛,伴尿频、尿痛。查体:结膜充血,双肾无叩击痛,膝踝关节肿胀有压痛。化验:HLA-B27(+)。尿WBC20~30/HP,管型(一)。此病人最可能的诊断是
患者,女,38岁。慢性腹泻已五年余,大便每日2~3次,稀便不成形,纳呆,腹胀,周身乏力,消瘦,舌淡苔白、脉缓,临床诊断最可能是
确定施工导流的标准依据的指标有()。
审计风险取决于重大错报风险和检查风险,下列表述中正确的是()。
教师在教学中的主导作用就是充分调动学生的积极性。()
直肠内镜检查最危险的并发症是
Therangeandqualityof【C11】______emotionsarepotentiallythesameforallhumangroups.Inthecourseof【C12】______inaparti
ARideinaCable-carArideinacable-carisoneoftheexcitingandenjoyableexperiencesachildcanhave.InSwitzerland
I______onseeingthemanager.Theserviceinthishotelisterrible.
穿上风情的旗袍,迈着小凤仙的步子,一个女人最美丽的日子流转在房间里,来世今生,恍如隔世。
最新回复
(
0
)