首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,一1,a]T,β=[3,10,6,4]T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,一1,a]T,β=[3,10,6,4]T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
admin
2019-06-09
59
问题
已知α
1
=[1,4,0,2]
T
,α
2
=[2,7,1,3]
T
,α
3
=[0,1,一1,a]
T
,β=[3,10,6,4]
T
,问:
(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表示?
(2)a,b取何值时,β可由α
1
,α
2
,α
3
线性表示?并写出此表示式.
选项
答案
考虑线性方程组(α
1
,α
2
,α
3
)x=β,其中x=(x
1
,x
2
,x
3
)
T
,对其增广矩阵[*]=[α
1
,α
2
,α
3
,β]作初等行变换: [*] 所以 (1)当b≠2时,方程组无解,此时β不能由α
1
,α
2
,α
3
线性表示; (2)当b=2且a≠1时,r(A)=[*]=3,方程组有唯一解: x=(x
1
,x
2
,x
3
)
T
=(一1,2,0)
T
, 于是β可唯一表示为β=一α
1
+2α
2
; (3)当b=2且a=1时,r(A)=[*]=2,方程组有无穷多个解: x=(x
1
,x
2
,x
3
)
T
=k(—2,1,1)
T
+(一1,2,0)
T
, 其中k为任意常数,这时β可由α
1
,α
2
,α
3
线性表示为 β=一(2k+1)α
1
+(k+2)α
2
+kα
3
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/AeV4777K
0
考研数学二
相关试题推荐
用比较判别法判定下列级数的敛散性:
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在ξ∈(0,1),使得f(ξ)=1一ξ;
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
设x→a时,f(x)与g(x)分别是x—a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x—a的n+m阶无穷小;②若n>m,则是x一a的n—m阶无穷小;③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
计算二重积分I=,其中D={(r,θ)|0≤r≤secθ,0≤θ≤}。
将∫01dy∫0yf(x2+y2)dx化为极坐标下的二次积分为________。
设A为m阶实对称矩阵且正定,BT为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
求微分方程y′-2χy=的满足初始条件y(0)=1的特解.
(1994年)设y=(1)求函数的增减区间及极值;(2)求函数图形的凹凸区间及拐点;(3)求其渐近线;(4)作出其图形.
随机试题
甲型强心苷和乙型强心苷的主要区别是
痈的局部治疗宜采用
根据《个人所得税法》规定,某大学教授在2007年6月份的下列哪些收入应缴纳个人所得税?()
某房地产估价机构接受委托,对市中心某大厦地下一、二层进行房地产抵押价值评估,目的是为委托人办理续期贷款提供价值参考依据。该大厦地下一层为各类独立餐饮店面,目前处于满租状态,租期一般为三年,部分早期进驻的店面租金水平低于同层其他类似店面15%左右,这部分店面
专家评估单个风险因素时,涉及技术方面的因素包括()。
沥青混合料按结构可分为( )。
计算机执行指令的基本过程分为两步,即从内存把指令读入的过程和执行的过程。其中,读指令是根据______所指的地址读入,而执行指令则是______中的地址。
数据库管理系统中的加锁协议规定了事务的加锁时间、持锁时间和释放锁时间,其中____________协议可以完全保证并发事务数据的一致性。
Whatisreportedinthenews?
Thewatchdoesnotseemtowork.Ithinkitneeds(repair)______.
最新回复
(
0
)