首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称阵,且满足条件A3+2A2=0,已知A的秩R(A)=2,(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵?其中E为3阶单位矩阵.
设A为3阶实对称阵,且满足条件A3+2A2=0,已知A的秩R(A)=2,(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵?其中E为3阶单位矩阵.
admin
2020-06-05
34
问题
设A为3阶实对称阵,且满足条件A
3
+2A
2
=0,已知A的秩R(A)=2,(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵?其中E为3阶单位矩阵.
选项
答案
(1)设λ是A的一个特征值,对应的特征向量为α,则 Aα=λα(α≠0),A
2
α=λ
2
α,A
3
α=λ
3
α 于是 (A
3
+2A
2
)α=(λ
3
+λ
2
)α 由已知条件A
3
+2A
2
=0,得(λ
3
+2λ
2
)α=0.又由于α≠0,故有λ
3
+2λ
2
=0,得λ=﹣2或λ=0,故A的特征值只可能是﹣2和0. 因为A是对称阵,故A必相似于某对角阵[*].又因为R(A)=2,从而(A-0E)x=0的基础解系中只含一个向量,λ=0只能是A的单特征值,于是A的特征值为λ
1
=λ
2
=﹣2,λ
3
=0. (2)因A是对称阵,所以对任意的k,A+kE也是对称阵,并且由矩阵A的特征值为λ
1
=λ
2
=﹣2,λ
3
=0知A+kE的特征值为﹣2+k,﹣2+k,k,于是当k﹥2时,A+kE的特征值全为正数,也就是k﹥2,A+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Afv4777K
0
考研数学一
相关试题推荐
设有直线及平由:4x-2y+z-2=0,则直线L
设A是n阶矩阵,下列命题中正确的是()
设随机变量X的分布函数为F(x),概率密度为其中A为常数,则=()
设二维随机变量(X,Y)在区域D={(χy)|0<χ<1,χ2<y<)上服从均匀分布,令U=(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z).
(2018年)求不定积分
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f(x1,x2,x3)的规范形为y12+y22,求a的值.
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)=一为正定二次型.
(1990年)质点p沿着以AB为直径的圆周,从点A(1,2)运动到点B(3,4)的过程中受变力F作用(见图2.7),F的大小等于点p到原点O之间的距离,其方向垂直于线段Op且与y轴正向的夹角小于求变力F对质点p所作的功.
设有向曲面s为锥面的下侧,且介于z=1与z=4之间,f(x,y,z)为连续函数,求第二型曲面积分
设有多项式P(x)=x4+a3x3+a2x2+a1x+a0,又设x=x0是它的最大实根,则P’(x0)满足
随机试题
导致解释学“本体论转折”的是()
哮证发作期的主要病因病机是
患者,男,17岁。因左下肢疼痛2个月入院,查体:左小腿中段局部肿胀,组织增厚较硬,有压痛,局部皮温稍高。体温38.2℃,实验室检查:WBC:13.8×1012/L,N:78%;X线平片见下图。急性骨髓炎与尤因肉瘤有哪些主要的鉴别点
神经-肌肉接头处的化学递质是
WWW网是()的简称。
危险废物的特性不包括()。
2013年8月1日甲公司对外提供一项为期8个月的安装劳务,合同总收入580万元。2013年共发生劳务成本230万元,但无法可靠地估计该项劳务交易结果。若预计已发生的劳务成本能得到补偿的金额为150万元,则甲公司2013年度因该项业务应确认的收入为(
根据以下资料.回答问题。2000年、2005年、2006年发达国家、发展中国家和世界总体的国际储备(不包括黄金)和黄金储备变化情况,如图所示:2000年到2006年印度国际储备量的平均增长速度低于()。
Iwouldliketocallyouatthreethisafternoon,______?
ThepassagefocusesontheneedforAmericanstolearnforeignlanguages.Itispossibletoget______ofEsperantospeakersan
最新回复
(
0
)