首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm为线性方程组Aχ=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βm=t1αm+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βm也为Aχ=0的一个基础解系.
设α1,α2,…,αm为线性方程组Aχ=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βm=t1αm+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βm也为Aχ=0的一个基础解系.
admin
2017-06-26
93
问题
设α
1
,α
2
,…,α
m
为线性方程组Aχ=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
m
=t
1
α
m
+t
2
α
1
,其中t
1
,t
2
为实常数,试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
m
也为Aχ=0的一个基础解系.
选项
答案
由Aχ=0的解的线性组合都是Aχ=0的解,知β
1
,…,β
m
均为Aχ=0的解.已知Aχ=0的基础解系含m个向量,故β,β,…,β也为Aχ=0的基础解系[*]β,β,…,β线性无关,m阶行列式 [*] 即所求关系式为t
1
m
+(-1)
m-1
t
2
m
≠0,即当m为奇数时,t
1
≠-t
2
;当m为偶数时,t
1
≠t
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/AjH4777K
0
考研数学三
相关试题推荐
设X1,X,…,Xn为来自总体N(μ,σ2)的简单随机样本,为样本均值,记则服从自由度为n-1的t分布的随机变量是().
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
假设曲线ι1=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线ι2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
差分方程3yx+1-2yx=0的通解为_________.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则().
有甲、乙、丙三个口袋,其中甲袋装有1个红球,2个白球,2个黑球;乙袋装有2个红球,1个白球,2个黑球;丙袋装有2个红球,3个白球.现任取一袋,从中任取2个球,用X表示取到的红球数,Y,表示取到的白球数,Z表示取到的黑球数。试求:(X,Y)的联合分布;
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设A为m×n矩阵,且r(A)==r<n,其中.若有三个线性无关解,求a,b及方程组的通解.
设((x一1)(t一1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
随机试题
甲公司拥有3幢房产,分别为A厂房、B仓库和C办公大楼,其中C办公大楼为甲公司和乙公司按份共有,甲公司占70%的份额,乙公司占30%份额。2015年发生了下列事项:(1)1月1日,甲公司与丙银行签订了流动资金周转借款合同,期限为1年,设定最高限额为500万
联系实际论述艺术创作的基本过程及每个环节的特征。
氯丙嗪阻断α受体而引起直立性低血压。
A.博来霉素B.多柔比星C.长春新碱D.环磷酰胺E.顺铂具有比较严重的神经毒性的是
下列除哪项外,均属脾肾阳虚经行浮肿的主证
河南境内黄河主要支流有()
关于教学与发展的关系,维果茨基的基本观点是()。
网络系统中,通常把()置于DMZ区。
Thereareseveraldifferentmethodsthatcanbeusedtocreateaforecast.Themethodaforecasterchoosesdependsupontheexpe
Theschoollibraryboughtanewbatchofbooksandmagazinesthismonth.Afterthelibrariansortedthemout,eachbookandmaga
最新回复
(
0
)