首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0, 且g(x)≠0(x∈[a,b]),g″(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得 f(ξ)/g(ξ)=f″(ξ)/g″(ξ
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0, 且g(x)≠0(x∈[a,b]),g″(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得 f(ξ)/g(ξ)=f″(ξ)/g″(ξ
admin
2022-08-19
42
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,
且g(x)≠0(x∈[a,b]),g″(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
f(ξ)/g(ξ)=f″(ξ)/g″(ξ).
选项
答案
设f′
+
(a)>0,f′
-
(b)>0, 由f′
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f′
-
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0; 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(x)=f(x)/g(x),显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
(a,c),ξ
2
∈(a,b),使得h′(ξ
1
)=h′(ξ
2
)=0, 而h′(x)=[f′(x)g(x)-f(x)g′(x)]/g
2
(x),所以[*] 令φ(x)=f′(x)g(x)-f(x)g′(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ′(ξ)=0, 而ξ′(x)=f″(x)g(x)-f(x)g″(x),所以f(ξ)/g(ξ)=f″(ξ)/g″(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/AjR4777K
0
考研数学三
相关试题推荐
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=_______.
设f’(a)≠0,则=______.
设当x→0时,(x-sinx)ln(1+x)是比exn-1高阶的无穷小,而exn-1是比∫0x(1-cos2t)dt高阶的无穷小,则n为().
(|x|+x2y)dxdy=________.
设D是xOy平面上以(1,1),(-1,1),(-1,一1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(xy+cosxsiny)dσ等于().
下列广义积分发散的是().
级数在-1<x<1内的和函数为________.
设f(x)一阶连续可导,且f(0)=0,f’(0)≠0,则=_____________.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(x)+bf(2h)-f(0)当h→0时是比h高阶的无穷小,试确定a、b的值
设函数f(x)在(-∞,+∞)内满足f(x)=f(x-π)+sinx,且当x∈[0,π)时,f(x)=x,求[*]
随机试题
A.肉眼血尿消失B.镜下血尿消失C.浮肿消失、血压正常D.艾迪斯计数正常E.血沉正常急性肾炎患儿可以上学的标准是
民法上的非票据关系包括()。
火药燃烧的特性有()
铺设水泥混凝土楼地面面层时,不正确的做法是()。
()是指由于流动性的不确定变化而使金融机构遭受损失的可能性。
A注册会计师负责审计甲公司2011年度财务报表。在确定拟实施的实质性程序时,A注册会计师遇到下列事项,请代为做出正确的专业判断。A注册会计师通过对甲公司及其环境的了解,获悉甲公司的产能严重过剩并出现连续数年的亏损,管理层按照固定资产的未来现金流量的现值
下列关于无形资产的会计处理的表述中,正确的是()。
有n个顶点的无向连通图至少有_________条边。
2014年12月份,我国房地产业土地购置面积4062万平方米,同比增长6.5%,土地成交价款:1000亿元,同比增长8.9%。关于2014年1-2月房地产开发和销售情况,能够从上述资料中推出的是:
求I=χ[1+yf(χ2+y2)]dχdy,D由y=χ3,y=1,χ=-1围成,f是连续函数.
最新回复
(
0
)