首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
admin
2019-11-25
80
问题
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为
,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
选项
答案
因为曲线是上凸的,所以y”<0,由题设得 [*]=-1. 令y’=p,y”=[*],则有[*]=-(1+p
)[*]arctanp=C
1
-x. 因为曲线y=y(x)在点(0,1)处的切线方程为y=x+1,所以P|
x=0
=1, 从而y’=tan([*]-x),积分得y=ln|cos([*]-x)|+C
2
. 因为曲线过点(0,1),所以C
2
=1+[*], 所求曲线为y=lncos([*]-x)+1+[*],x∈(-[*]). 因为cos([*]-x)≤1,所以当x=[*]时函数取得极大值1+[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/qoD4777K
0
考研数学三
相关试题推荐
已知ξ1,ξ2是方程(λE一A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
设a0=0,a1=1,an+1=3an+4an+1(n=1,2,…).(1)令(2)求幂级数的收敛半径、收敛区间、收敛域及和函数.
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2为任意常数,则满足方程组①且满足条件x1=x2,x3=x4的解是_______.
设ξ,η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η},试写出二维随机变量(X,Y)的分布律及边缘分布律,并求P{ξ=η}.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T(1)求方程组(I)的基础解系;(2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ
曲线
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈使得f’(ξ)=
计算二重积分其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
随机试题
在国际竞争性招标过程中,从刊登招标广告或发售招标文件算起,给予投标商准备投标的时间不得少于()天。
不实行资本金制度的项目是()。
施工安全信息保证体系的工作内容包括:①信息收集;②确保信息工作条件;③信息处理;④信息服务。正确的工作顺序是()。
背景:某市一办公楼是6层内浇外砌砖混结构,总建筑面积6500m2。该工程1999年8月开工,2000年11月竣工。经市质量监督站核定达不到合格等级,建设单位委托法定检测单位检测,结论是:该楼内墙混凝土强度不满足设计要求,整栋房屋不满足8度抗震设防要求。
社会主义的本质是解放生产力,发展生产力,消灭剥削,消除两极分化,最终达到()。
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
微分方程(6x+y)dx+xdy=0的通解是_______
PresidentBarackObamaclaimedprogressWednesdayinhissecond-termdrivetocombatclimatechangebutsaidmoremustbedonet
设循环队列的存储空间为Q(1:100),初始状态为空。现经过一系列正常操作后,front=49,则循环队列中的元素个数为
Manyadelegatewasinfavorofhisproposalthataspecialcommittee______toinvestigatetheincident.
最新回复
(
0
)