首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
admin
2018-04-08
72
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,则由定义知,对任意的实n维列向量x≠0,有x
T
(B
T
AB)x>0,即(Bx)
T
A(Bx)>0,于是,Bx≠0,即对任意的实n维列向量x≠0,都有Bx≠0(若Bx=0,则A(Bx)=A0=0,矛盾)。因此,Bx=0只有零解,故有r(B)=n(Bx=0有唯一零解的充要条件是r(B)=mn)。 充分性:因A为m阶实对称矩阵,则A
T
=A,故(B
T
AB)
T
=B
T
A
T
B=B
T
AB,根据实对称矩阵的定义知B
T
AB也为实对称矩阵。若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的实n维列向量x≠0,有Bx≠0。又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)=x
T
(B
T
AB)x>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/Alr4777K
0
考研数学一
相关试题推荐
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
已知二次型f(x1,x2,x3)=2x12+x22+x32+2tx1x2+tx2x3是正定的,则t的取值范围是____________.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k__________.
求微分方程的通解.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=0.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
颅内压增高的一般处理中,下列哪项是错误的
一患者心电图图形如图3—4,最可能的诊断为
下列关于市场经营销与推销关系的表述中,正确的是()。
在理想沉淀池中,对沉淀池过程的基本假设是()。
若发现某U盘已感染病毒,则可()。
根据资料计算最佳现金持有量为( )元。根据资料计算最低现金管理成本为( )元
第一次世界大战期间,俄国首先发生革命的条件不包括()。
在ARM处理器中,只允许使用16位指令编码的状态称为【49】状态,只允许使用32位指令编码的状态称为【50】状态。
A、寓言篇幅较长B、寓言是古代的故事C、寓言蕴含深刻的哲理D、寓言很少以人为主人公C
Gettingagoodnight’ssleephaslongbeenknowntoconsolidatetheday’smemories,movingthemfromshort-termstorageintolon
最新回复
(
0
)